Dr. Amelia Taylor

Dr. Amelia Taylor

Co-author

Computing & Information Technology

19 publications

Amelia Taylor is a lecturer in Artificial Intelligence at the Malawi University of Business and Applied Sciences, former the University of Malawi, the Polytechnic. She teaches Artificial Intelligence, Computational Intelligence and programming modules. In addition, she teaches and supervises MSc and...

Read more

Multi-Class Skin Problem Classification Using Deep Generative Adversarial Network (DGAN)

Journal Article
Published 2 years ago, 446 views
Author
Maleika Heenaye-Mamode Khan
Co-authors
Nuzhah Gooda Sahib-Kaudeer, Motean Dayalen, Faadil Mahomedaly, Ganesh R. Sinha, Kapil Kumar Nagwanshi, Dr. Amelia Taylor, Dr. Amelia Taylor
Abstract
The lack of annotated datasets makes the automatic detection of skin problems very difficult, which is also the case for most other medical applications. The outstanding results achieved by deep learning techniques in developing such applications have improved the diagnostic accuracy. Nevertheless, the performance of these models is heavily dependent on the volume of labelled data used for training, which is unfortunately not available. To address this problem, traditional data augmentation is usually adopted. Recently, the emergence of a generative adversarial network (GAN) seems a more plausible solution, where synthetic images are generated. In this work, we have developed a deep generative adversarial network (DGAN) multi-class classifier, which can generate skin problem images by learning the true data distribution from the available images. Unlike the usual two-class classifier, we have developed a multi-class solution, and to address the class-imbalanced dataset, we have taken images from different datasets available online. One main challenge faced during our development is mainly to improve the stability of the DGAN model during the training phase. To analyse the performance of GAN, we have developed two CNN models in parallel based on the architecture of ResNet50 and VGG16 by augmenting the training datasets using the traditional rotation, flipping, and scaling methods. We have used both labelled and unlabelled data for testing to test the models. DGAN has outperformed the conventional data augmentation by achieving a performance of 91.1% for the unlabelled dataset and 92.3% for the labelled dataset. On the contrary, CNN models with data augmentation have achieved a performance of up to 70.8% for the unlabelled dataset. The outcome of our DGAN confirms the ability of the model to learn from unlabelled datasets and yet produce a good diagnosis result.
Year of Publication
2022
Journal Name
Computational Intelligence and Neuroscience
Volume
2022
Issue
1
Page Numbers
13
Top Researchers
“Academic success depends on research and publications.”
---- Philip Zimbardo ----