
Received June 15, 2020, accepted July 16, 2020, date of publication July 22, 2020, date of current version July 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3011293

Learning to Learn Sequential Network Attacks
Using Hidden Markov Models
TIMOTHY CHADZA 1,2, (Member, IEEE),
KONSTANTINOS G. KYRIAKOPOULOS 1, (Member, IEEE), AND
SANGARAPILLAI LAMBOTHARAN 1, (Senior Member, IEEE)
1Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, U.K.
2Department of Electrical Engineering, University of Malawi-Polytechnic, Blantyre, Malawi

Corresponding author: Konstantinos G. Kyriakopoulos (k.kyriakopoulos@lboro.ac.uk)

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC), U.K., through the Communications Signal
Processing-Based Solutions for Massive Machine-to-Machine Networks (M3NETs) Project, under Grant EP/R006385/1.

ABSTRACT The global surge of cyber-attacks in the form of sequential network attacks has propelled the
need for robust intrusion detection and prediction systems. Such attacks are difficult to reveal using current
intrusion detection systems, since each individual attack phase may appear benign when examined outside
of its context. In addition, there are challenges in building supervised learning models for such attacks, since
there are limited labelled datasets available. Hence, there is a need for updating already built models to
specific operational environments and for addressing the concept drift. A hidden Markov model (HMM)
is a popular framework for sequential modelling, however, in addition to the above challenges, the model
parameters are difficult to optimise. This paper proposes a transfer learning (TL) approach that exploits
already learned knowledge, gained from a labelled source dataset, and adapts it on a different, unlabelled
target dataset. The datasets may be from a different but related domain. Five unsupervised HMM techniques
are developed utilising a TL approach and evaluated against conventional machine learning approaches.
Baum-Welch (BW), Viterbi training, gradient descent, differential evolution (DE) and simulated annealing,
are deployed for the detection of attack stages in the network traffic, as well as, forecasting both the next
most probable attack stage and its method of manifestation. Specifically, for the prediction of the three next
most likely states and observations, TL with DE achieved a maximum accuracy improvement of 48.3%,
and 27.4%, respectively. Finally, the actual detection prediction for the three next most probable states and
methods of manifestation reaches 78.9% and 96.3% using TL with BW and DE, respectively.

INDEX TERMS Transfer learning, hidden Markov model, Viterbi decoding, forward-backward, sequential
network attacks.

I. INTRODUCTION
Sequential network attacks (SNAs) may exist as advanced
persistent threats (APTs) or multi-stage network attacks
(MSAs) and are executed in a series of steps; however,
the individual steps may either be benign or malicious. Intru-
sion detection systems (IDSs), a mandatory line of defence
in a network, may be unable to detect these attacks due to
time variation between attack stages, which may span a long
time [1]. Generally, a cyber-attack can be represented as a
diamond model [2], an attack graph or a kill chain [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Yassine Maleh .

Advanced, sequential cyber threats have recently seen a
resurgence, due to the emergence of the Internet of Things
and the increase in the number of interconnected devices [4].
Cybersecurity Ventures [5] forecasts that cybercrime will
incur a cost of over $6 trillion annually by 2021, hence
the drive for robust detection and prediction systems is
essential.

Essentially, conventional machine learning (CML) tech-
niques can be utilised to improve the responsiveness of detec-
tion and prevention models in dealing with security threats.
Efforts towards forecasting sequential network attacks are
in progress and hidden Markov model (HMM) is a popular
machine learning technique that is being adopted [6]. HMM
has a tractable mathematical formalisation and it utilises state

134480 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

T. Chadza et al.: Learning to Learn Sequential Network Attacks Using HMMs

transition and emission probability distributions to recognise
SNAs.

Parameter learning in HMM context is a major problem
due to the unavailability of labelled datasets in some domains,
which is frequent problem in cyber-security. In other sit-
uations, the dataset may be insufficient, outdated or may
require complex computations to train the model. In addi-
tion, there is a need for adapting models to specific envi-
ronments, for learning alternative tasks (multi-task learning)
and for addressing concept drift [7]. Transfer Learning (TL)
addresses these challenges by reusing prior knowledge,
acquired from a source domain, towards the development of
a model in a target domain.

TL is currently experiencing significant interest and is
expected to be the next value driver of machine learning (ML)
after supervised learning (SL), as mentioned in [8]. TL meth-
ods have successfully been applied in various real-world
domains, however, they have been less explored in sequential
analysis [9]. Using TL, HMM parameters can be transferred
from the source to the target domain in an effort to enhance
the task of the target domain [10]. The source domain model
can either be used in its entirety or reconstituted to suit the
target domain.

This work addresses the challenge of detecting and fore-
casting SNAs in computer networks given observations from
the captured network traffic. However, in contrast to CML
approaches, TL has been deployed in order to leverage
already learned knowledge from models built on the source
domain and use them as a starting point to efficiently develop
models in the target domain.

For classification purposes in the target domain, five pop-
ular HMM learning algorithms, namely, Baum Welch (BW),
Viterbi training (VT), differential evolution (DE), gradient
descent (GD), and simulated annealing (SA) are deployed
and their performance is compared against the conventional
HMM approaches.

To evaluate the efficacy of using TL over CML,
theDARPA2000 [11] dataset has been utilised, since it is well
documented and illustrates a typical MSA scenario. In addi-
tion, a recent dataset, CICIDS2018 [12], has been analysed
to further highlight the performance benefits of TL, when
applied on modern cyber-attack sequences. Snort IDS [13],
a popular, open-source signature-based solution, has been
used in both the source and target domains to generate
alerts, which are thenmapped to HMMobservations. Overall,
the contributions of this paper are as follows:
• A comprehensive analysis for applying TL in HMMs for
detection and prediction of SNAs. Algorithms adapted
for TL purposes include both local (BW, VT and GD)
and global (DE and SA) optima solutions. Evalua-
tion results include: detecting all states (AS), current
state (CS), next state (NS), and next observation (NO)
using three levels of accuracy.

• A total of 48 distinct experimental scenarios, covering
15HMM training combinations and five core algorithms
have been analysed on both TL and CML. The five core

algorithms are BW, VT, DE, GD and SA. Furthermore,
38 multiple runs were performed on individual stochas-
tic training combinations.

• Analysis of data sampling techniques for splitting
dataset for training and evaluation. In addition to the
sequential sampling technique, uniform sampling has
been introduced, as well as sample injection for both the
sequential and uniform sampling. This will ensure con-
sistency in the observation symbols between the training
and evaluation datasets.

The rest of the sections of this paper are consecutively
arranged as follows: Section II reviews the TL related work in
general followed by closely related work on TL and HMM.
In Section III both the SL and unsupervised learning (UL)
HMM approaches have been outlined. The experimental
setup is presented in Section V followed by the methodol-
ogy in Section VI and then the results and discussions in
Section VII. The paper concludes in Section VIII.

II. RELATED WORK
Despite the popularity of TL, to the best of our knowledge,
no previous work has investigated sequence-based analysis
of network attacks using TL in HMM. For this reason, gen-
eral prior work on TL and HMM is presented to appreciate
the advancements in those generic fields. Authors in [14]
attest to the fact that TL has been investigated in various
applications, particularly, in deep learning, where pre-trained
models are reused for visual recognition and natural language
processing. They presented a transductive TL approach for
classifying unseen attacks utilising prior knowledge from
known attacks and reinforced the necessity for a vigorous
exploration of TL. In contrast, this article addresses detection
and forecasting of states and observations from sequence
analysis.

The fundamentals of TL have been well articulated in a
survey by authors in [10] and this served as the building
block in identifying the practicability of TL for SNA detec-
tion and prediction. Three different settings of TL that were
identified included the inductive, transductive and unsuper-
vised approaches categorised with respect to the variations
in domains and tasks for both source and target. The paper
reveals that TL has, generally, been limited to small scale
applications excluding network traffic analysis and the fact
that the unsupervised TL approach has not been explored in
depth.

Authors in [9] presented a new perspective regarding the
mismatch that exists between the source and target domains.
They proposed a sub-structural regularisation TL model
aimed at preserving target domain features. The work inte-
grated HMM and regularisation theory and was validated in
part-of-speech tagging using textual corpora.

The work by authors in [15] proposes a new approach
to effectively evaluate the amount of knowledge that should
be transferred from source to target domain. They demon-
strated the efficacy of their approach in clustering, co-transfer

VOLUME 8, 2020 134481

T. Chadza et al.: Learning to Learn Sequential Network Attacks Using HMMs

TABLE 1. The standard representation of the HMM parameters where N is number of states, M is number of unique observations, si is the unique state i ,
qt is the state at time t , vk is the probability of observing symbol k . Additionally, the limiting conditions for the parameters have been provided.

learning and classification tasks. The results highlighted the
performance enhancement of heterogeneous TL and future
research direction includes the statistical modelling of source
domain features and determining the optimum features.

Authors in [16] proposed using TL in HMM for capturing
anomalous states of nodes at the physical substrate in a
network slicing scenarios, based on observations from the
virtual nodes. The BW algorithm, was modified to transfer
knowledge between two physical nodes.

With respect to research work in conventional HMMs,
there are numerous efforts that have been developed to
address MSA and advanced persistent threats (APTs).
Notable work includes [17] where the authors developed
a framework for real-time MSA prediction. They con-
ducted HMM parameter-estimation using both UL and SL
approaches. Even though the SL was able to detect three out
of the five DARPA 2000 attack phases, the UL was unable to
detect any attack phase. This highlights the drive for vigorous
approaches to improve the prediction mechanisms for UL,
as labelled datasets, may not always be available.

Furthermore, the work in [4] develops an alert correlation
framework for predicting APTs using BW for forecasting the
next step of an attack campaign based on a synthetic dataset.
The work in [1] attempts to address both the state and obser-
vations detection and prediction of a MSA based on DARPA
2000 dataset. The work highlighted that the performance of
BW and VT may significantly be improved following the
proposed hybrid parameter learning approaches.

Overall, the reviewed work in this section has demon-
strated the significant impact that TL can yield when intro-
duced in learning models. These works highlight the need for
vigorous efforts towards overhauling CML techniques. Pre-
sumably, it is anticipated that HMM learning can be improved
beyond the current state-of-the-art of BW and expectation
maximisation. Furthermore, research should not only focus
on state, but also on observation forecasting.

III. HIDDEN MARKOV MODEL
A HMM has been defined in [1] as two level stochastic
process, where the first level represents the unobserved states
of a modelled system and the second level represents the
observations or emissions obtained from this system. Pri-
marily, the HMM parameters are normally represented as

a 3-tuple, λ = (A,B, π), where A, B and π denote the
initial state vector, state transition matrix and the observation
matrix, respectively. These parameters as described in [18],
have been illustrated in Table 1, while considering a set,
S = {s1, s2, . . . , sN}, ofN states, a set, V = {v1, v2, . . . , vM},
ofM distinct number of observation symbols, and a sequence,
O = {o1, o2, . . . , oT }, of T observations, where oi ∈ V and
i ∈ 1 . . . T .
There are three fundamental problems in HMM [18]:

i) estimation of the observation sequence probability,
ii) determination of the model that represents a given
observation sequence, and iii) the decoding of the hidden
states that best represent an observation sequence, given
the model. Of these three problems, representing an obser-
vation sequence with the appropriate HMM model, which is
referred to as learning or training or parameter estimation,
remains a major HMMchallenge. In the next subsection, both
supervised and unsupervised HMM learning techniques are
described.

A. SUPERVISED LEARNING
In SL approaches, the training data is labelled, and in the case
of HMM, this means that the prior knowledge of both the
observation and hidden states is utilised to estimate the HMM
parameters, λ = (A,B, π). In most SL HMM implementa-
tions, it is a common practice to assume the initial state to
be state of the first observation symbol, s1, hence estimation
usually focuses only on A and Bmatrices. However, the com-
putation of π is also discussed, to avoid any assumptions
about the initial state. In [17], the authors illustrated how
the HMM parameters are estimated based on the maximum
likelihood estimate, which is practically obtained by simply
counting the number of transitions and observations in each
HMM state.

Specifically, each element, πi, of the initial state probabil-
ity vector, π , is calculated as the number of times, π (i), that
the state is si, divided by the total number of elements in the
state sequence, T , as shown in (1).

πi =
π (i)
T

(1)

Equation (2), shows how each element of A, aij, is com-
puted as the number of transitions from state i to j, a(i, j),

134482 VOLUME 8, 2020

T. Chadza et al.: Learning to Learn Sequential Network Attacks Using HMMs

divided by the total number of transitions from state i.

aij =
a(i, j)∑N
j=1 a(i, j)

(2)

On the other hand, each element of B, bj(vk), is obtained
by counting the number of occurrences of the observation vk
in state j, b(j, vk), divided by the total number of observations
in state j as in (3).

bj(vk) =
b(j, vk)∑M
k=1 b(j, vk)

(3)

B. UNSUPERVISED LEARNING
In unsupervised learning (UL) approach, the training data is
unlabelled, and for HMM, this implies that only the obser-
vation sequence is known, without any state knowledge.
Computation of π , A and B can be achieved through two
possible ways. First way is by obtaining the most probable
state sequence of a given observation sequence using Viterbi
decoding and then finding the maximum likelihood estimate
of both A and B. Second way is random initialisation and
re-estimation ofA andB using parameter learning algorithms,
such as BW,VT,DE,GD and SA. These algorithms have been
described in the remaining sections.

1) BAUM-WELCH ALGORITHM
The BW algorithm is an expectation maximisation approach
customised for the estimation of HMM parameters. It uses
forward-backward algorithm to estimateπ ,A andB following
a two-step expectation maximisation process, firstly in the
expectation step or E-step, the likelihood is obtained using the
current parameters, and secondly, in the maximisation step or
M-step new parameters are re-estimated while optimising the
expected likelihood [19].

The BW algorithm has been described in details in [18],
including how HMM parameters are re-estimated, further-
more, the pseudocode has been presented in [1]. The
backward and forward variables are the two most pertinent
parameters in the proposed work and are briefly discussed as
follows:

a) Forward variable, αt (i): This is the probability of
encountering the partial observations, o1, o2, ..ot at
time t , while in state i, and for initialisation (t = 1),
induction (1 < t ≤ T) and termination (t = T), αt (i)
is obtained as in (4), (5) and (6), respectively.

α1(i) = πibj(o1) (4)

αt+1(j) = bj(ot+1)
N∑
i=1

αt (i)aij (5)

P(OT |λ) =
N∑
i=1

αT (i) (6)

b) Backward variable, βt (i): This is the probabil-
ity of the remaining partial observation sequence,
ot+1, ot+2, ..oT , while in state i at time T , given the

HMM parameters, λ [20]. For initialisation and induc-
tion, βt (i) is obtained as in (7) and (8), respectively.

βT (i) = 1 (7)

βt (i) =
N∑
j=1

βt+1(j)bj(ot+1)aij (8)

2) VITERBI TRAINING
The VT algorithm, also called segmental K-means, uses the
Viterbi decoding algorithm to obtain the estimates of states
which are then used alongside the observation sequence to
determine the HMM parameters. It is therefore necessary to
first describe the Viterbi algorithm process which is key to
the VT.
The Viterbi algorithm is similar to the forward-backward

algorithm except that at each node, instead of computing all
the available paths, only the best or Viterbi path is selected
and used in the next computation. Two parameters are intro-
duced, first, αt (i) which represents the Viterbi path and sec-
ond, theψt (i) parameter to track the prior state that maximises
the likelihood towards all states and at each time instance [4].

The VT pseudocode is illustrated in Algorithm 1 and in
particular, both the Viterbi algorithm and SL are used to
determine the state sequence Q and λ, respectively. This
process is repeated until a convergence threshold is met or the
number ofmaximum iterations is exceeded. Lines 3-11 shows
the recursive process for VT.

Algorithm 1 Viterbi Training Pseudocode
Input: O, λ, maximum iterations G, convergence

threshold Th
Output: λ̂

1: Obtain the likelihood P(O|λ) from λ and O
2: Iter = 1
3: repeat
4: Obtain Q using O and λ through Viterbi algorithm
5: Use Q and O to obtain λ̂ through SL
6: Obtain new likelihood P(O|λ̂) from λ̂ and O
7: ε = |P(O|λ̂)− P(O|λ)|
8: λ = λ̂

9: P(O|λ) = P(O|λ̂)
10: Iter = Iter + 1
11: until ε > Th ∨ Iter > G

3) DIFFERENTIAL EVOLUTION
The DE is a global optimisation algorithm that undergoes a
three-step process of genetic mutation, crossover, and selec-
tion [21]. Authors in [1] describe the DE process as follows:

a) Transformation of initial λ: This corresponds to the
transformation of the initial λ into single-dimensional
vectors.

b) Differential mutation: This involves the computation of
mutants or new individuals through the utilisation of
three randomly selected vectors.

VOLUME 8, 2020 134483

T. Chadza et al.: Learning to Learn Sequential Network Attacks Using HMMs

c) Differential crossover: This uses a predetermined
crossover rate to generate a trial vector by recombining
mutant and parent vector [22].

d) Termination: The maximum likelihood can be used to
replace the parent vectors with new vectors that are
closer to the global optima solution [21].

4) GRADIENT DESCENT
The GD algorithm uses a differential function to compute
the training parameter of a model based on a defined cost
function. In HMM lingua, the cost function, J , is the cross-
entropy, defined as the negative log-likelihood, logP(O|λ),
that an observation sequence O was generated by a model,
λ [23]. This is shown in (9).

J = −logP(O|λ) (9)

To begin with, P(O|λ) can be represented as a function of
forward and backward variables, and HMM parameters as
shown in (10).

P(O|λ) =
N∑
i=1

N∑
j=1

αt (i)aijbjOt+1βt+1(j) (10)

In [24], it has been shown that each HMM parameters
require the partial differentials of P(O|λ) and these have been
derived as shown in (11), (12), and (13), for A,B and π ,
respectively.

∂P(O|λ)
∂aij

=

T−1∑
t=1

αt (i)bjOt+1βt+1(j) (11)

∂P(O|λ)
∂bj(vk)

=

∑
t3Ot=vk

N∑
i=1

αt (i)aijβt+1(j)

+δ(O1, vk)πj + β1(j) (12)
∂P(O|λ)
∂πi

= biO1β1(i) (13)

In (12), the symbol δ represents the Kronecker delta func-
tion, which generates a zero when the two elements being
compared are different and a one if otherwise. Therefore,
δ(O1, vk) is represented as shown in (14):

δ(O1, vk) =
{
0, O1 6= vk
1, O1 = vk

(14)

Authors in [23] further highlight how the λ can be opti-
mised using the cost function. For instance, each element of
re-estimated A, âij is determined by (15). Both B and π are
obtained similarly. Parameter η is the step size or learning
rate, and was set to 0.001. The transition parameter is updated
as in (15):

âij = aij − η
∂J
∂aij

(15)

GD’s pseudocode is illustrated in Algorithm 2 where line 1
obtains the cost function. Lines 3-12 recursively re-estimate
the new HMM parameters using partial derivatives.

Algorithm 2 Gradient Descent Pseudocode
Input: O, λ, step size η, maximum iterations G,

convergence threshold Th
Output: λ̂

1: Compute J0 from P(O|λ) as in (9) using O, λ, α, β
2: Limit = FALSE
3: repeat
4: Compute the partial derivatives ∂Jo

∂aij
, ∂Jo
∂bjvk

, and ∂Jo
∂πi

using (11), (12) and (13)
5: Compute âij based on (15), and similarly for b̂jvk

and π̂ to obtain λ̂
6: Compute J1 from P(O|λ̂) as in (9) using O and λ̂
7: if |J0− J1| <= Th then
8: Limit = TRUE
9: Iter = Iter + 1

10: λ = λ̂

11: J0 = J1
12: until Limit = TRUE ∨ Iter > G

5) SIMULATED ANNEALING
The SA algorithm is a stochastic global optimisation search
algorithm that analogises a metal cooling process to the
search for a minimum in a general system [25]. Specifically,
the SA utilises a temperature control parameter for searching
the global solution and the adaptation of the cooling sched-
ule, thereof, determines its efficiency [26]. Several works
have proposed the integration of SA and HMM to provide
a self-tuning capability of SA and commonly, SA starts from
a random solution, however, the initialisation has been made
flexible to permit different types of initialisation which are in
turn used for setting up of the cost function. The following
steps are used to train an HMM based on SA:

a) Initialisation: This involves the generation of prior esti-
mates of the model commonly using random solutions.

b) Specifying the temperature: Two control parameters are
required: the temperature (control) parameter Tc and
temperature reduction rate Tr .

c) Obtaining the objective function: The log-likelihood of
initial solutions can be adopted as an objective function.
Alternatively, various benchmark cost functions have
been proposed in [27].

d) Creation of new neighbourhood structure: This is also
referred to as the perturbation process and begins with
the selection of random elements from the old model.
In [28], one of the suggested perturbation processes
is by adding a random value to the randomly selected
elements, and since the rows’ sum may exceed unity,
normalisation is required at this stage.

e) Selection of solution: When the threshold is not met,
new solutions are created by selecting a random index
in the current solution and adding an exponent param-
eter as in (16), followed by re-normalisation.

λ← λ+
exp(−ε)
Tc

(16)

134484 VOLUME 8, 2020

T. Chadza et al.: Learning to Learn Sequential Network Attacks Using HMMs

f) Annealing: The annealing process simply reduces the
temperature or control parameter based on the specified
reduction rate and is obtained by: (17).

Tc← Tc × Tr (17)

g) Termination: The maximum likelihood can be used to
replace the old model parameters with the new parent
parameters when a threshold is met, or, the maximum
number of iterations is exceeded.

Algorithm 3 outlines the SA pseudocode where the initial-
isation and the temperature specification are considered as
inputs. Line 2 obtains the objective function, which is com-
monly the negative log-likelihood. The new neighbourhood
structure is defined in Lines 4-6. The selection of a solution
is presented in lines 9-11 and lastly, the annealing process is
shown in line 13.

Algorithm 3 Simulated Annealing Pseudocode
Input: O, λ, temperature parameter Tc, reduction

rate Tr , maximum iterations G, convergence
threshold Th

Output: λ̂
1: for Iter ← 1 to G do
2: Assign the likelihood P(O|λ) to F1
3: λ̂ = λ

4: Select random elements in λ̂
5: Add a random value to the randomly selected

elements of λ̂
6: Normalise rows of λ̂ so that they sum to unity
7: Assign the likelihood P(O|λ̂) to F2
8: ε = |F1 − F2|
9: if ε > Th then
10: Select random index in λ̂ and add exp(−ε)

Tc
11: Normalise rows of λ̂ such that they sum to unity
12: λ = λ̂

13: Tc = Tc × Tr

IV. TRANSFER LEARNING
A. DOMAINS AND TASKS
Domains and tasks are two fundamental TL concepts
that need to be defined before describing the proposed
approach. A domain, D, is composed of two elements: a
feature space X , and a marginal probability distribution P(X),
where X = {x1, x2, . . . , xn} ∈ X [10]. X is the space of all
possible features, X is a specific learning sample, and xi is an
individual feature. A domain represents the space where the
data is defined in and is denoted asD = {X ,P(X)}. A source
domain DS encompasses training instances, whereas a tar-
get domain DT contains testing instances [29].

Given a specific domain D, a task, T , is also repre-
sented by two elements: a set of all possible labels Y and
a model or predictive function f (.) that determines a cor-
responding label based on training data, x, [30]. A task is
mathematically represented as a pair T = {Y,P(Y |X)},

where P(Y |X) is the predictive function f (x). Task exam-
ples, in the source, TS , or target, TT , domains include
regression, classification, clustering, and dimensionality
reduction.

TL is defined as the process of improving the learning of
the target predictive function, fT (x), in DT using the knowl-
edge in DS and TS , where DS 6= DS , or TS 6= TS [10].
If the domains are different, this implies that either XS 6= XT
or PS (X) 6= PT (X).

B. TRANSFER LEARNING TYPES
In a TL scheme, development of a detection or prediction sys-
tem can be achieved using two common approaches, namely
the develop model and pre-trained model [31]. Typically,
depending on the relationship between the source and target
domains or tasks, there are three TL types. These types are
inductive, transductive and unsupervised. Unlike the CML,
which shares the same domains and tasks, TL types do not
necessarily need to be similar.

The inductive TL setting, as defined in [10], is when
the target and source tasks are different, regardless as to
whether the source and target domains are similar. Inductive
TL has labelled data in DT and depending on the avail-
ability of labels in DS , it is further divided into self-taught
or multi-task learning. Specifically, self-taught inductive TL
posses no labelled data in DS , whereas multi-task inductive
TL has labelled data in DS , which permits simultaneous
learning.

The transductive TL type is dissimilar to the inductive TL,
in that both the source and target tasks are similar, TS = TT ,
whereas the domains are different, though related,DS 6= DT .
Furthermore, the labelled data is available only in DS . There
exist two specific cases of transductive TL as highlighted
in [10]. The first case is when both the source and target
domains have different feature spaces,XS 6= XD. The second
case occurs when the feature spaces between the source and
target domains are similar, XS = XD though the marginal
probability distributions are different, PS (X) 6= PS (X).
In the unsupervised TL, there are different, though related,

DS and DT , as well as, TS and TS , and labelled data is
unavailable in both domains. Figure 1 summarises the TL
settings or configurations using a simple flowchart based on
data labelling in both DS and DT .

C. KNOWLEDGE EXCHANGE CASES
To understand how TL can be implemented in HMMs, it is
necessary to briefly describe the four cases of knowledge
exchange that may take place between a source and a target
domain:

a) Instance-based: certain parts of data in the source
domain may be reused in the target domain by
re-weighting [32].

b) Feature representation: learns the suitable features
of source domain that may be adapted in the target
domain [33].

VOLUME 8, 2020 134485

T. Chadza et al.: Learning to Learn Sequential Network Attacks Using HMMs

FIGURE 1. An illustration of the transfer learning (TL) configurations with
respect to data labelling in both the source and target domain.

c) Parameter transfer: commonmodel parameters or prior
distributions, such as HMM’s λ, may be transferred
from the source to the target domain [9].

d) Knowledge transfer: considers the existence of some
similarities between source and target domains [10].

With regards to the proposed HMM framework, the TL
approach with parameter exchange is deployed to leverage
the source’s HMM model, λS , as a staring point for cal-
culating the target’s, λT . The authors in [15] emphasise
that the main research problem in TL is in determining
whether a given source domain is suitable in transferring
knowledge and determining the amount of knowledge to be
transferred.

One intuitive approach would be to transfer more knowl-
edge when the source is closely related to the target, and
transfer less knowledge otherwise. To this end, the authors
in [16] propose using a rate, ζ = 1/t , inversely to the
time instance, t , where t corresponds to a parameter learning
iteration. Thus, a modified λnew can be obtained using:

λnew = λnew × (1− ζ)+ λodd × ζ (18)

V. EXPERIMENTAL SETUP
A. OVERVIEW OF EVALUATED DATASETS
Two public datasets that were used in this paper are the
DARPA 2000 [11], developed by the Defense Advanced
Research Projects Agency (DARPA), and the CSE-CIC-
IDS2018 [12], developed by the Communications Security
Establishment (CSE) in collaboration with the Cana-
dian Institute for Cybersecurity (CSE-CIC-IDS2018). The
DARPA 2000 dataset is a popular MSA comprising of two
Distributed Denial of Service (DDoS) scenarios with pack-
ets collected from two nodes, namely, the inside and the
demilitarised zone (DMZ). In [34], the five-phase MSA is
summarised as Internet Protocol (IP) sweeping, Sadmind
probing, Sadmind exploit, DDoS software installation and
launching.

On the other hand, the CSE-CIC-IDS2018 dataset was
formulated to address the over-reliance sub-optimal datasets,
for evaluation of intrusion detection and intrusion prevention
approaches, which are unreliable and outdated [35]. Unlike
the DARPA 2000 dataset which presented an MSA scenario,
the CSE-CIC-IDS2018 dataset comprises of seven sequential
attack scenarios: Brute-force, Heartbleed, Botnet, Denial of
Service (DoS), DDoS, Web attacks, and infiltration of the
network from inside [12]. This dataset was formulated to
address the lack of reliable, public and recent datasets, which
has resulted in anomaly-based IDS approaches suffering from
accurate deployment, analysis and evaluation [35].

B. SNORT CONFIGURATION
The acquisition of observations and states for representa-
tion required first extracting the essential features from the
dataset. In this paper, Snort IDS Version 2.9.11.1 [13] has
been deployed in Ubuntu 18.04.1 operating system to gen-
erate alerts. MATLAB R2020a programming language was
used to extract features from the alerts, remove duplicates and
assign observation and state symbols.

1) DARPA 2000
The Snort IDS default configuration, with rules aggregated
by PulledPork 0.7.4 [36] has been used to generate alerts.
This Snort IDS configuration was unable to detect the first
four stages of the DDoS attack, hence, customised rules as
described in [34] were introduced to improve the detection
accuracy. The rules were extracted from [37] and slightly
modifiedwhenever alerts were not generated and this resulted
in 2306 alerts for Inside dataset and 2949 alerts for DMZ
dataset as shown in Table 2.

TABLE 2. Alerts generated from Snort IDS using both default and
customised configuration for DARPA 2000 dataset and only default
configuration for CSE-CIC-IDS2018.

2) CSE-CIC-IDS2018
Unlike in the DARPA 2000, where both the default and cus-
tomised rules were used, in the CSE-CIC-IDS2018 dataset,
the default configuration was used. This is because the default
configuration was able to detect the attacks. Furthermore,
the dataset contains multiple attacks and it’s precise customi-
sation would be beyond the scope of this work. Neverthe-
less, the obtained alerts are sufficient for HMM construction,
and conceptually, in this paper, the individual attacks are

134486 VOLUME 8, 2020

T. Chadza et al.: Learning to Learn Sequential Network Attacks Using HMMs

aggregated sequentially as proposed in [38]. The two separate
datasets (CSE-CIC1 and CSE-CIC2) are obtained by creating
similar attack scenarios. As observed in Table 2, there are
five phases which represent DoS (phase 1), DDoS (phase 2),
Brute Force-Web, Brute Force-XSS and SQL Injections
(phase 3), infiltration-Dropbox download (phase 4) and
infiltration-nmap and portscan (phase 5). In addition to hav-
ing different sizes, the two datasets are carefully selected in
order to have different distributions, as an example, the DoS
attack in CSE-CIC1 and CSE-CIC2 uses SlowHTTPTest and
Hulk tools, respectively.

VI. METHODOLOGY
All the experiments were conducted using MATLAB 2018b
software and scripts were written to extract the fields from
Snort IDS alerts, pre-process, train and evaluate the CML
and TL HMM. Figure 2 illustrates the methodology adopted
where it is shown that there are two datasets that were cate-
gorised into the source and target domain i.e the Inside and
CSE-CIC1 for source domain and the DMZ and CSE-CIC2
for the target domain.

FIGURE 2. Experimental methodology illustrating the deployed transfer
learning approach for hybrid supervised and unsupervised hidden
Markov model.

A. PRE-PROCESSING
During pre-processing, the alerts are mapped to observation
symbols based on the alert description. By following a careful
Snort rule design, alert descriptions may have unique Snort
IDs, and each ID can simply be mapped to an observation
symbol. For DARPA 2000 and CSE-CIC-IDS2018 dataset,
the states are assigned as indicated in Section V-A and V-B2,
respectively. Thereafter, duplicate alerts based on timestamp,
alert category, alert description, IP address, and port number,
were removed. Furthermore, in order for the source and target
domains to have similar features, non-common observation
symbols were removed.

B. OBSERVATION SAMPLING
Data sampling entails splitting each of the phases of a dataset
into training and evaluation parts. This was an important
task during pre-processing, as it was necessary to ensure

similar observation features between training and evaluation
datasets. The source domain dataset was used in it’s entirety,
with assumption of full knowledge at the source domain. The
target domain was split in training and evaluation datasets in
two different ratios: 30% training and 70% evaluation and
inversely.

In this paper, four data sampling techniques are proposed,
i) sequential, ii) uniform, iii) sequential with sample injec-
tion, and iv) uniform with sample injection. In sequential
sampling, consecutive samples from each phase were taken
depending on the split ratio (i.e. a phase was not scanned
throughout). In uniform sampling, the dataset was uniformly
scanned to sample observations throughout its whole dura-
tion, i.e. from the beginning to the end. In sequential sampling
with injection, the training and evaluation datasets are com-
pared and missing observations, in any dataset, are replaced
with observations from the full dataset. The same approach
of injecting observations is performed for uniform sampling
with injection.

C. POST-PROCESSING
During post-processing, a CML-based HMM of the source
domain is constructed utilising full knowledge of the domain,
i.e. both the observation and state sequences, with an SL
approach (see Figure 3a). The SL CML approach ensures
two points. Firstly, the full knowledge in the source domain
was used, including states. Secondly, all examined TL meth-
ods had a common starting model, since a UL CML tech-
nique would not converge to the same λ model. For the
target domain, the UL approaches for both CML and TL
are implemented using only the observation sequences and a
percentage of the target dataset. In TL, the parameter transfer
approach is adopted, therefore, the resulting UL CML model
is used as a starting point before fine-tuning the target model,
as illustrated in Figure 3a.

This introduces a bias in favour of TL, since the number
of UL CML iterations are already embedded in the trans-
ferred model. To address this, fixed-point iteration (FPI) is
deployed, whereby the UL CML approach uses the same
number of iterations to that of TL. For each iteration the
trained parameters from the previous iteration are recur-
sively used to initialise the current training parameters.
The same training data is used at each iteration. The for-
mula for the maximum number of iterations for UL CML,
MaxiterCML , is shown in (19) where SizeCML and SizeTL are
the lengths of the training data points in UL CML and TL,
respectively.

MaxiterCML =
SizeTL ×MaxiterTL

SizeCML
(19)

In total, 16 different combinations of experiments are
possible and are presented in Table 3. An analysis in the
results section will highlight the best experimental setting
among the evaluated parameters: use of FPI, data sam-
pling technique, training/testing ratio and HMM learning
algorithm.

VOLUME 8, 2020 134487

T. Chadza et al.: Learning to Learn Sequential Network Attacks Using HMMs

FIGURE 3. a) Training phase: Transfer learning (TL) scheme when
compared with conventional machine learning (CML) approach. Note that
there is full knowledge in the source domain, hence SL CML is used. The
derived model is transferred to the TL framework and then adapted to the
Target domain using UL approach. Solid lines represent the diagram’s
flow, whereas dotted lines represent notional explanations. b) Testing
phase: The performance evaluation for both CML and TL was based on
the same testing observation sequence.

TABLE 3. Illustration of 16 different experiments performed using TL and
CML with and without fixed point iteration (FPI), and using two different
ratios for training and evaluation datasets.

D. HMM EVALUATION METRICS
For evaluation purposes, four performance metrics have
been used and these are accuracy (for prediction detection),
Bayesian inference criterion (BIC), mean square error (MSE)
and adjusted random index (ARI) (BIC, MSE, ARI for model
parameter evaluation). With regards to accuracy, both the
detection and prediction estimates are determined based on an
estimated window sample size of 150, as was experimentally
established in [1]. The window size is shifted by one sample
each time until all samples are processed and the results are
averaged together. Furthermore, a two-fold cross-validation
approach is performed by swapping the training and evalua-
tion datasets and averaging the results. The Viterbi decoding

is used for AS detection with the last state used for CS
detection. On the other hand, the forward algorithm has been
used in conjunction with A and B transition matrices for pre-
dicting NS and NO, respectively. The evaluation procedure is
illustrated in Figure 3b.

Specifically, as explained in detail in [1], the probability
that the NS is j at t+1,P(qt+1 = sj), is computed bymultiply-
ing the current forward variable, αt (i), by the corresponding
state transition, aij, as shown in (20). On the other hand,
the probability that the NO is vk at t+1,P(ot+1 = vk), is com-
puted bymultiplying the previous forward variable, αt (i) with
the respective observation probability, bj(vk), as indicated
in (21).

P(st+1 = sj) =
N∑
i=1

αt (i)aij (20)

P(ot+1 = vk) =
N∑
j=1

αt (j)bj(vk) (21)

With respect to the MSE, the complete target domain
dataset is first trained using SL and the obtained results for
the B parameter is compared between the λideal and λTL .
Note that only the B parameter has been considered in this
paper, as it includes information from both the observations
and states.

In addition to MSE, the BIC value has been used instead
of the log-likelihood in order to include the penalisation of
over-parameterised models as explained in [39]. The BIC is
computed as in (22), where numPar = N 2

+ 2N − 1 and the
best HMM is the one with the lowest BIC value,

BIC = −2× ln(P(O|λ))+ numPar × ln(T) (22)

Lastly, the adjusted random index (ARI) score, proposed
in [40], addresses the challenge of comparing two different
partitions of a finite set of clusters. With respect to HMM,
the ARI is a measure of agreement between the estimated
sequence of states and the ground truth [41]. The ARI is
computed as shown in (23), where Ag represents the number
of state agreements, EI is the expected index for adjustment
and Ta stands for the total pairs of entities.

ARI =

0, Ta = EI
Ag− EI
Ta− EI

, otherwise
(23)

VII. RESULTS AND DISCUSSION
The following section extensively analyses the results on
the DARPA 2000 dataset through 16 experimental settings,
as described in Table 3. The best performance among these
settings is identified in Sections VII-A1 and VII-A2. A full
analysis of the identified optimum experimental settings is
presented in Section VII-A3. These settings are also used,
in Section VII-B, for analysis of the CSE-CIC-IDS2018
dataset.

134488 VOLUME 8, 2020

T. Chadza et al.: Learning to Learn Sequential Network Attacks Using HMMs

A. RESULTS FOR DARPA 2000 DATASET
1) ACCURACY RESULTS FOR ALL APPLICATIONS
The detection of all the states (AS), current state (CS) and the
prediction of the next state (NS) and next observation (NO)
have been considered. For NS and NO, a maximum of three
probable levels have been used, where level 1, level 2 and
level 3 consider only the most probable symbol, first two
probable symbols, and the three probable symbols, respec-
tively. Results for all applications, where an application refers
to AS, CS, next state level 1 (NS1), next state level 2 (NS2),
next state level 3 (NS3), next observation level 1(NO1), next
observation level 2 (NO2) and next observation level 3 (NO3),
are presented in Tables 4 and 5.

Table 4 shows the results for the maximum percentage gain
of TL over CML in each application across all the evaluated
training techniques. In other words, this indicates which is
the highest performance improvement that can be achieved in
each application, regardless of the technique (DE, GD, etc).
As can be observed, Experiments 6 and 14 have better per-
formance for AS, CS, NS1 and NS2. Experiment 9 had the
highest accuracy score for NS3 prediction, whereas Exper-
iments 5 and 13 performed better for all NO predictions.
Despite the considerable performance of mentioned exper-
iments, Experiment 16 had the best overall performance.
It should be highlighted that the accuracy gain being consid-
ered is with respect to TL improvement over CML.

TABLE 4. Experimental results for maximum percentage improvement
using TL over CML based on each application: detection of all states (AS)
and current state (CS), and prediction of next state (NS) and next
observation (NO). Bold values indicate the highest gain for each
application.

Table 5 shows the average percentage gain of TL over
CML in each application. In other words, these are the aver-
aged results across all techniques for each application. It is
observed that Experiment 14 performs better than the rest
for AS, CS, and all NS levels. Nevertheless, it should be
noted that Experiment 7 performed better for NO1, whereas
Experiment 13 performed better for NO2, and NO3 predic-
tion (slightly higher than that of Experiment 14). The overall
gain of 34.53% is observed for Experiment 14. Experiment
6 had the second best performance for AS, CS, and all NS
levels. Experiments 6 and 14 both used uniform sampling

TABLE 5. Experimental results for average percentage improvement
using TL over CML based on application: detection of all states (AS) and
current state (CS), and prediction of next state (NS) and next observation
(NO). Bold values indicate highest gain for each application.

with 70% training for the target domain. The only difference
between the two experiments is that Experiment 6 used FPI,
whereas Experiment 14 did not. This shows that the introduc-
tion of FPI slightly degrades the performance, however, FPI
translates to a fair performance comparison between CML
and TL, as explained in Section VI-C. Thus, the settings
of Experiment 6 would be opted as the most suitable for
analysing the application performance.

2) ACCURACY RESULTS FOR EACH TECHNIQUE
In addition to analysing the performance of each application,
an analysis is made based on individual training techniques
(BW, GD, etc). The maximum percentage improvement of
TL over CML in each technique across all applications is
shown in Table 6. In other words, these are the highest TL
performance gains achieved for every technique, regardless
of the application scenario.

As observed in Table 6, five techniques, namely uni-
form BW, uniform DE, uniform GD, count-based DE and
count-based SA, performed better with the settings of
Experiment 6. Similar performance is observed for Experi-
ment 14 expect for count-based SA.Uniform and count-based
VT perform better using the setting of Experiments 8 and 16.
Furthermore, using the setting Experiment 4, the random DE
and count-based GD performed better.

Overall, Experiment 14 has the best gain for all indi-
vidual techniques and this is followed by Experiment 6.
This matches the suggestion made in the previous subsection
where Experiment 6 is considered as a candidate experiment
worthy of exploring.

Table 7 shows the results for the average percentage
improvement of TL over CML based on each technique,
across all applications. In other words, the results of each
technique for all applications are averaged. A total of
six techniques performed better with the settings from
Experiments 6 and 14, whereas two techniques, random
BW and random VT performed better using settings of

VOLUME 8, 2020 134489

T. Chadza et al.: Learning to Learn Sequential Network Attacks Using HMMs

TABLE 6. Experimental results for maximum percentage improvement using TL over CML based on each technique: Baum Welch (BW), Viterbi
training (VT), different evolution DE), gradient descent (GD) and simulated annealing (SA). Bold values indicate the highest gain for each technique.

TABLE 7. Experimental results for average percentage improvement using TL over CML based on individual techniques: Baum Welch (BW), Viterbi
training (VT), different evolution DE), gradient descent (GD) and simulated annealing (SA). Bold values indicate the highest gain for each technique.

Experiment 11. As has already been alluded to in the perfor-
mance of Tables 4, 5 and 6, Experiment 6 is the ideal experi-
mental setting and this corresponds to the use of FPI, uniform
sampling and 70% of training data. Therefore these settings
have been been adopted for producing the next results.

3) PERFORMANCE COMPARISON FOR OPTIMUM
EXPERIMENTAL SETTINGS
The results in this subsection are produced using FPI and
uniform sampling for both TL and CML. A percentage of
observations were extracted from each phase for training
with the remaining portion reserved for evaluation. Uniform
sampling entailed two experiments with different percentages
for evaluation and training. In the first experiment, training
and evaluation were allocated 30% and 70%, respectively.

In the second experiment, training and evaluation were allo-
cated 70% and 30%, respectively. In other words, the pre-
sented results are an aggregate of Experiments 6 and 2 (see
Table 3), such that the entire dataset is used for training and
evaluation in a two fold cross-validation.

The overall results for AS detection are shown in Figure 4
which depicts a consistent improvement of TL over CML.
From the results, the highest improvement in TL is achieved
by count-based SA (SA-Count), which has a gain of about
53.7%. This does not signify that SA-Count is the best overall
technique as it corresponds to a detection accuracy of about
69.7%, whereas the DE based technique reaches up to 76.3%
accuracy. Thus, all DE based techniques are recommended
for AS detection followed by VT, which has a detection
accuracy of 72.5% when using TL.

134490 VOLUME 8, 2020

T. Chadza et al.: Learning to Learn Sequential Network Attacks Using HMMs

FIGURE 4. Comparison of all states detection accuracy for HMM training
techniques when applying TL and CML.

FIGURE 5. Comparison of current state detection accuracy for HMM
training techniques when applying TL and CML.

In Figure 5, the results for CS detection are similar to the
performance of AS, where the TL outperforms CML for all
techniques. Specifically, the highest gain is demonstrated by
uniform DE, which has an accuracy improvement of 74.0%
followed by VT-uniform at 68.2%. The least gain is observed
in count-based BW with an accuracy of 21.5%. When com-
pared to uniform BW and random BW, it was anticipated
that the count-based technique would perform better, since
it uses part of the observation information for initialisation.
This is justified in CML, where count-based BW outperforms
its counterparts, but not as clearly manifested in TL.

The NS prediction results are shown in Figures 6, 7,
and 8 for NS1, NS2, and NS3, respectively. TL performed
better than CML in all the three levels with the uniform
and count-based DE being the best overall techniques, with
prediction accuracy of about 96.3% for NS3. As the number
of levels increases, the accuracy gain drops from 73.2% (in
NS1) to 52.7% (in NS3). The random SA is the second best
technique with an accuracy of about 96% for NS3 followed
by count-based SA at 94.11%. An interesting observation
is noted in DE, VT and SA performance, where the TL
converges to the same point regardless of the initialisation
technique.

FIGURE 6. Comparison of next state level 1 prediction accuracy for HMM
training techniques when applying TL and CML.

FIGURE 7. Comparison of next state level 2 prediction accuracy for HMM
training techniques when applying TL and CML.

FIGURE 8. Comparison of next state level 3 prediction accuracy for HMM
training techniques when applying TL and CML.

Lastly, the results for NO prediction are shown
in Figures 9, 10, 11 for NO1, NO2, and NO3, respectively.
To begin with, for NO1, it is observed that the highest gain
of TL over CML is achieved by random based DE at about
29.5%. This is followed by randomGD at 27.5% and then the
SA based techniques at 26.4%, 25.4% and 19.7% for uniform,
count-based and random initialisation, respectively. The rest

VOLUME 8, 2020 134491

T. Chadza et al.: Learning to Learn Sequential Network Attacks Using HMMs

FIGURE 9. Comparison of next observation level 1 prediction accuracy for
hidden Markov model training techniques when applying transfer
learning (TL) and conventional machine learning (CML).

FIGURE 10. Comparison of next observation level 2 prediction accuracy
for hidden Markov model training techniques when applying transfer
learning (TL) and conventional machine learning (CML).

FIGURE 11. Comparison of next observation level 3 prediction accuracy
for hidden Markov model training techniques when applying transfer
learning (TL) and conventional machine learning (CML).

of the techniques range from 9.4% to 0.4%. The exception is
count-based DE and GD where there is insignificant gain in
TL over CML.

It should be highlighted that the actual maximum accuracy
value for NO1 in TL is peaks at about 34.6% for count-based

BW followed by random BW at 34.3% and then count-based
VT at 32.2%. It can be deduced that a technique manifest-
ing a high maximum improvement of TL over CML, does
not necessarily imply that it is the best overall technique.
It should also be noted that in contrast to NS prediction, which
has 5 unique states, the NO prediction is lower due to the
increased search space of 25 unique observations.

Concerning NO2 prediction in Figure 10, random DE
achieved a maximum improvement of about 51.2% for TL
over CML. Uniform and count-based SA followed at 45.5%
and 42.4% respectively. Then, random GD and random SA
achieved an accuracy gain of 35.1% and 33.2%, respectively.
There was a negative transfer of −0.9% for count-based DE,
which reiterates the need for careful consideration when
applying TL. Nevertheless, this is the only instance with a
negative TL and−0.9% is insignificant, hence, overall, TL is
still of great benefit over CML. For the actual performance,
all BW based techniques performed the best with 61.2%,
61.2% and 60.65% for uniform, random and count-based
initialisation, respectively. BW has demonstrated better per-
formance with TL when integrated with HMM unlike in the
AS and CS detection and NS prediction.

For NO3 prediction, random DE maintains its consistently
good performance with a gain of about 60.7% for TL over
CML.Also, SA based techniques are the next best performing
techniques with about 56.6%, 50% and 45.7% for count-
based, uniform and random initialisation, respectively. The
uniformGD achieved a gain of about 19.5%, whereas the uni-
form DE obtained a gain of about 19.3%. Considering the
actual accuracy values, though the percentage improvement
of TL over CML for BW and VT based techniques restricted
up to 20%, the uniform, random and count-based BW tech-
niques performed the best with n overall of 79.9%, 78.9% and
77.9%, respectively. This is followed by all the VT techniques
which all produced a prediction accuracy of about 72.%.

It is interesting to note that unlike in CMLwhere the actual
performance of individual techniques varies due to different
initialisations, in TL, the performance of VT, DE and GD
is consistent for all applications. This can be attributed to
the fact that the models converge to the same parameters.
On the contrary, the BW and SA techniques achieve different
results as they have separate convergence points for different
initialisation techniques.

Overall, for TL, the DE-based techniques perform better
than the rest with an average gain of 73% for all applications
irrespective of the initialisation method. The achieved TL
gain over CML, is about 51% and 43.4% for the random and
uniform initialisation, respectively.

4) HMM PARAMETER EVALUATION
In addition to the detection and prediction accuracy, BIC,
MSE and ARI have been used to measure HMM parameter
alignment of TL and CML to the ideal parameters generated
when training the whole target dataset with SL CML. As seen
in the BIC results (Figure 12), the increase performance of
TL over CML is observed mainly in SA based techniques.

134492 VOLUME 8, 2020

T. Chadza et al.: Learning to Learn Sequential Network Attacks Using HMMs

FIGURE 12. Bayesian information criterion for HMMs trained using TL
and CML. Lower value indicates better technique.

Because a lower BIC value indicates a better technique,
TL outperforms CML for all SA initialisation techniques.
An in-depth exploration of the BIC indicates that values are
less for TL than CML for all training techniques.

Though the performance of TL is better based on BIC,
there is no clear correlation when compared with the accuracy
values for all applications. For instance, as it was highlighted
previously, theDE performs better inmost of the applications,
but this is not clear when considering BIC values.

FIGURE 13. Mean square error for emission probabilities of HMMs
trained using TL and CML. Lower value indicates a better technique.

When using the MSE metric (Figure 13), the compari-
son is based only on emission probabilities, B, rather than
the whole model λ. In terms of MSE, TL performs better
than CML for all training and initialisation techniques. This
concurs with both accuracy and BIC performance. There is
an evident increase in performance between TL and CML
across all techniques, not as clearly manifested when looking
at the BIC values. Nevertheless, there is still no association
of accuracy with the MSE metric. For instance, the increased
accuracy performance of TL over CML using DE (as asserted
in Section VII-A3) is not indicated in Figure 13. The most
plausible reason is that MSE metric only considers the train-
ing data and not the evaluation data which is used for accuracy
determination.

FIGURE 14. Adjusted random index for HMMs trained using TL and CML.
Higher values indicate a better technique.

Lastly, the ARI performance is illustrated in Figure 14,
where a comparative performance is observed similar to that
of AS and CS detection in Figures 4 and 5, respectively. The
VT and DE techniques are shown to be the best performing
techniques just like in AS and CS detection. SA techniques
come third in performance gains.

It can be deduced that the ARI is a better performance
metric than the BIC and MSE. It would, therefore, be sug-
gested for analysis of HMMs. A simple algorithm can thus
be deduced such that when the ARI for TL performs less
than that for CML, then CML would be deployed, thereby
avoiding negative transfer. After model parameters for TL,
λTL and CML, λCML are learned, the ARI for TL, ARITL and
CML, ARICML are compared as in Algorithm 4.

Algorithm 4 Selection of Best Model Based on ARI
1: Learn parameters λCML , λTL
2: Compute ARICML , ARITL
3: if ARITL > ARICML then
4: λ = λTL
5: else
6: λ = λCML

5) MULITPLE RUNS FOR RANDOM BASED TECHNIQUES
In order to statistically analyse random based techniques and
the stochastic nature of SA, multiple runs of experiments
were proposed for random based BW, VT, DE, GD and all
SA techniques. To this end, a total of 38 runs were made using
these stochastic algorithms for all applications.

Figure 15 presents boxplot results focusing on AS detec-
tion for all techniques. It is observed that TL outperforms the
CML in all the training techniques. The expectation was that
there would be stochastic results for all techniques. Instead,
random VT, DE and GD have deterministic response when
using TL. There is an insignificant interquartile range (IQR)
of 46.7% - 47.8% for random VT when performing TL.
All SA based techniques had larger IQR, up to 11.4% using
TL on uniform SA. A plausible reason for the significant

VOLUME 8, 2020 134493

T. Chadza et al.: Learning to Learn Sequential Network Attacks Using HMMs

FIGURE 15. Boxplot for 38 runs of random BW, VT, DE and GD, and all SA
based techniques in detecting all states of an observations sequence.
White-filled boxplots indicate CML whereas black-filled boxplots
represent TL.

IQRs in the case of SA is that it incorporates at least two
random processes, since it selects arbitrary elements and also
adds random values to λ. The random process implies the
possibility of a wide range of solutions. Unlike TL, where
most techniques have constant values, in CML all techniques
have varying IQR at 9.1%, 8.4%, 5.5%, 5%, 6.5%, 6.2% and
6.6% for random BW, random VT, random DE, random GD,
uniform SA, random SA and count-based SA, respectively.
Also, it is noted that for all HMM training techniques, there
is no overlap between TL and CML values.

Regarding the multiple runs for CS detection, shown
in Figure 16, TL outperforms CML for all the training tech-
niques. There is no variance seen in TL using random VT,
DE and GD. For random BW, a small IQR range is observed,
as was the case in AS detection. There are outliers in ran-
dom VT, DE and GD for CML, and also in random BW
and GD for TL. There is no overlap between the IQRs of
TL and CML. It should also be highlighted that all the CML
techniques have a significant IQR within the same ranges of
AS detection.

FIGURE 16. Boxplot for 38 runs of random BW, VT, DE and GD, and all SA
based techniques in detecting the current state of an observation
sequence. White-filled boxplots indicate CML whereas black-filled
boxplots represent TL.

Considering the performance for NS1, NS2 and NS3 pre-
diction as shown in Figures 17, 18, and 19, respectively,
a similar pattern is observed for the multiple runs of these
applications. For all the applications, there is no overlap of

FIGURE 17. Boxplot for 38 runs of random BW, VT, DE and GD, and all SA
based techniques in predicting next states level 1 of an observation
sequence. White-filled boxplots indicate CML whereas black-filled
boxplots represent TL.

FIGURE 18. Boxplot for 38 runs of random BW, VT, DE and GD, and all SA
based techniques in predicting next states level 2 of an observation
sequence. White-filled boxplots indicate CML whereas black-filled
boxplots represent TL.

FIGURE 19. Boxplot for 38 runs of random BW, VT, DE and GD, and all SA
based techniques in predicting next states level 3 of an observation
sequence. White-filled boxplots indicate CML whereas black-filled
boxplots represent TL.

IQRs between TL and CML. Furthermore, TL performance
surpasses that for CML in all training techniques. Similar
to AS and CS detection, the random VT, DE and GD for
TL yield deterministic solutions. Also, random BW using
TL has a narrow IQR and it is the only technique that has
outliers. There is a corresponding increase in performance
as the number of levels increases for all techniques. This
is anticipated as the increase in the number of levels corre-
sponds to inclusion of many possible NSs, which increases
the prediction probability.

134494 VOLUME 8, 2020

T. Chadza et al.: Learning to Learn Sequential Network Attacks Using HMMs

FIGURE 20. Boxplot for 38 runs of random BW, VT, DE and GD, and all SA
based techniques in predicting next observation level 1 of an observation
sequence. White-filled boxplots indicate CML whereas black-filled
boxplots represent TL.

FIGURE 21. Boxplot for 38 runs of random BW, VT, DE and GD, and all SA
based techniques in predicting next observation level 2 of an observation
sequence. White-filled boxplots indicate CML whereas black-filled
boxplots represent TL.

FIGURE 22. Boxplot for 38 runs of random BW, VT, DE and GD, and all SA
based techniques in predicting next observation level 3 of an observation
sequence. White-filled boxplots indicate CML whereas black-filled
boxplots represent TL.

Regarding NO performance, for each level, as shown
in Figures 20, 21, and 22, it can be observed that there are
more outliers when compared to previous results. Neverthe-
less there is no overlap between IQRs of CML and TL. The
constant performance for random VT, DE and GD in TL is
still maintained for all applications just like in AS, CS and
NS results. It is observed that for all TL techniques, the per-
formance is either constant or within a small IQR, which can

be interpreted as the convergence benefit of TL over CML.
In NO prediction, it is challenging to get better performance
than NS prediction, since the number of observations are
much more than those for states. Similar to NS prediction,
when the number of levels increases, there is a corresponding
increase in performance.

Overall, although there are stochastic solutions for ran-
domly initialised BW, VT, DE, GD and all SA based tech-
niques, TL still overshadows the CML based techniques in all
applications. There is no overlap of IQRs for CML and TL,
hence the improvement in the performance of TL over CML
as presented in Section VII-A3 and VII-A4 still upholds. The
multiple runs do not present a noticeable benefit for CML,
hence TL usage performs better than CML in stochastic
techniques as well.

B. RESULTS FOR CSE-CIC-IDS DATASET
After the extensive analysis of TL performance over CML,
it was considered to identify an appropriate technique that
can be replicated onto the CSE-CIC-IDS2018 dataset. The
uniform DE has consistent performance in all evaluated
scenarios with DARPA 2000 and, thus, was considered to
analyse the CSE dataset as well. The results (Figure 23)
reinforce the previous observation of significant performance
improvement of TL over CML with the highest gain shown
for NO3 at 60.9% (i.e. an increase from 20.6% for CML to
81.5% for TL). Even though CML barely yields any results
for the applications of CS, NS1 and NO1, TL is able to detect
and predict both observations and states with considerably
higher accuracy values.

FIGURE 23. Comparison of all states (AS) and current state (CS) detection
accuracy and next state (NS) and next observation (NO) prediction
accuracy between TL and CML using the uniformly initialised differential
evolution technique.

VIII. CONCLUSION
This paper addresses the challenge of detecting and forecast-
ing complex, cyber-attacks that are manifested in a sequential
order, or phases. Each phase may appear benign or malicious

VOLUME 8, 2020 134495

T. Chadza et al.: Learning to Learn Sequential Network Attacks Using HMMs

when analysed independently, however, when phases are
analysed in sequence, the real motives are revealed. There
are several challenges that make this task even more chal-
lenging. In particular, it is very difficult to access labelled
cyber-attack datasets. In addition, previously generated
machine learning models become obsolete very quickly, due
to the rapidly changing attacking techniques and attitudes,
as well as, the dynamic nature of the underlying benign
traffic.

To address these challenges, this paper examines the effec-
tiveness of transfer learning techniques on sequential net-
work attacks. The primary driver of this research work is to
leverage prior modelling capability and knowledge derived
from known, labelled datasets and use it to efficiently develop
models for new, yet unlabelled, datasets in an unsupervised
fashion. Ultimately, new models may be trained (learned)
by learning from prior knowledge. This approach opens a
new paradigm in adapting derived models to new trends
in sequential attacks and different underlying network
dynamics.

An extensive experimental analysis, examining five
parameter learning algorithms, three parameter initialisation
techniques, four data sampling techniques and two pairs of
training to evaluation ratios has been conducted. The results
show that TL outperforms CML for all evaluated algorithms,
i.e. BW, VT, DE, GD and SA using uniform, random, and
count-based initialisation techniques. Specifically, the DE
algorithm, a globally optimum solution, regardless of any
initialisation technique, gives the highest gains in TL in com-
parison to the rest of the deployed techniques. In addition,
DE-based TL also shows the best actual performance overall
for the applications of AS, CS and NS. However, for NO
prediction, the BW-based TL technique gives the highest
prediction values overall.

Besides demonstrating the significantly improved perfor-
mance in detection and forecasting using TL, this paper has
utilised fixed point iteration for a fair comparison towards
CML. Notably, all three metrics used for HMM parame-
ter evaluation, BIC, MSE, and ARI, attest to the increased
benefit of using TL over CML. The ARI metric in partic-
ular showcases a behaviour that aligns with and justifies
very well the detection results in AS and CS. This obser-
vation suggests that a simple algorithm may be deployed
that intelligently decides which specific technique (say,
BW or DE) or approach (TL or CML) would be best to
deploy, based on preliminary results derived from the ARI
metric.

Finally, future work will include the application of TL
approaches in Deep Neural Networks for SNA analy-
sis and further analysis on alternative transfer learning
approaches.

Note: The MATLAB source code for this work is available in Code
Ocean (https://codeocean.com/capsule/3814125) and in Loughborough Uni-
versity’s repository (https://doi.org/10.17028/rd.lboro.12666950).

REFERENCES
[1] T. Chadza, K. G. Kyriakopoulos, and S. Lambotharan, ‘‘Analysis of hid-

den Markov model learning algorithms for the detection and prediction
of multi-stage network attacks,’’ Future Gener. Comput. Syst., vol. 108,
pp. 636–649, Jul. 2020.

[2] H. Al-Mohannadi, Q.Mirza, A. Namanya, I. Awan, A. Cullen, and J. Disso,
‘‘Cyber-attack modeling analysis techniques: An overview,’’ in Proc.
IEEE 4th Int. Conf. Future Internet Things Cloud Workshops (FiCloudW),
Aug. 2016, pp. 69–76.

[3] E. Hutchins, M. Cloppert, and R. Amin, ‘‘Intelligence-driven computer
network defense informed by analysis of adversary campaigns and intru-
sion kill chains,’’ Leading Issues Inf. Warfare Secur. Res., vol. 1, no. 1,
p. 80, 2011.

[4] I. Ghafir, K. G. Kyriakopoulos, S. Lambotharan, F. J. Aparicio-Navarro,
B. Assadhan, H. Binsalleeh, and D. M. Diab, ‘‘HiddenMarkov models and
alert correlations for the prediction of advanced persistent threats,’’ IEEE
Access, vol. 7, pp. 99508–99520, 2019.

[5] C. Ventures, ‘‘2019 official annual cybercrime report,’’ Herjavec Group,
Toronto, ON, Canada, Tech. Rep., 2019. [Online]. Available: https://www.
herjavecgroup.com/wp-content/uploads/2018/12/CV-HG-2019-Official-
Annual-Cybercrime-Report.pdf

[6] T. Shawly, A. Elghariani, J. Kobes, and A. Ghafoor, ‘‘Architectures
for detecting interleaved multi-stage network attacks using hidden
Markov models,’’ IEEE Trans. Dependable Secure Comput., early access,
Oct. 23, 2019.

[7] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[8] A. Ng, ‘‘Nuts and bolts of building AI applications using deep learning,’’
in Proc. NIPS Keynote Talk, 2016, pp. 1–5.

[9] S. Sun, H. Liu, J. Meng, C. L. P. Chen, and Y. Yang, ‘‘Substructural reg-
ularization with data-sensitive granularity for sequence transfer learning,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 6, pp. 2545–2557,
Jun. 2018.

[10] S. Jialin Pan and Q. Yang, ‘‘A survey on transfer learning,’’
IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359,
Oct. 2010.

[11] Lincoln Laboratory. 2000 DARPA Intrusion Detection Scenario Specific
Datasets. Accessed: Jun. 1, 2020. [Online]. Available: https://www.ll.mit.
edu/r-d/datasets/2000-darpa-intrusion-detection-scen%ario-specific-
datasets

[12] Canadian Institute of Cybersecurity. CSE-CIC-IDS2018 on AWS.
Accessed: May 18, 2020. [Online]. Available: https://www.unb.ca/cic/
datasets/ids-2018.html

[13] CISCO & Affiliates. Snort—Network Intrusion Detection & Prevention
System. Accessed: Jun. 6, 2020. [Online]. Available: https://www.snort.org

[14] J. Zhao, S. Shetty, J. W. Pan, C. Kamhoua, and K. Kwiat, ‘‘Transfer
learning for detecting unknown network attacks,’’ EURASIP J. Inf. Secur.,
vol. 2019, no. 1, pp. 1–13, Dec. 2019.

[15] L. Yang, L. Jing, J. Yu, and M. K. Ng, ‘‘Learning transferred weights
from co-occurrence data for heterogeneous transfer learning,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 27, no. 11, pp. 2187–2200,
Nov. 2016.

[16] W. Wang, Q. Chen, X. He, and L. Tang, ‘‘Cooperative anomaly detec-
tion with transfer learning-based hidden Markov model in virtualized
network slicing,’’ IEEE Commun. Lett., vol. 23, no. 9, pp. 1534–1537,
Sep. 2019.

[17] P. Holgado, V. A. Villagra, and L. Vazquez, ‘‘Real-time multistep attack
prediction based on hidden Markov models,’’ IEEE Trans. Dependable
Secure Comput., vol. 17, no. 1, pp. 134–147, Jan. 2020.

[18] L. R. Rabiner, ‘‘A tutorial on hidden Markov models and selected appli-
cations in speech recognition,’’ Proc. IEEE, vol. 77, no. 2, pp. 257–286,
Feb. 1989.

[19] H. Tan and S. Ma, ‘‘Learning partially observable Markov decision model
with EM algorithm,’’ in Proc. 7th Int. Conf. Appl. Inf. Commun. Technol.,
Oct. 2013, pp. 1–4.

[20] B. Benyacoub, S. E. Bernoussi, and A. Zoglat, ‘‘Credit scoring model
based on baum-welchmethod,’’ inProc. ACS Int. Conf. Comput. Syst. Appl.
(AICCSA), May 2013, pp. 1–5.

[21] A. A. R. Sá, A. O. Andrade, A. B. Soares, and S. J. Nasuto, ‘‘Estimation of
hidden Markov models parameters using differential evolution,’’ in AISB
Convention Communication, Interaction and Social Intelligence. Beijing,
China: AISB, 2008.

134496 VOLUME 8, 2020

T. Chadza et al.: Learning to Learn Sequential Network Attacks Using HMMs

[22] K. Ghanem, A. Draa, E. Vyumvuhore, and A. Simbabawe, ‘‘Differential
evolution to optimize hidden Markov models training: Application to
facial expression recognition,’’ J. Comput. Inf. Technol., vol. 23, no. 2,
pp. 157–170, 2015.

[23] J. Salazar,M. Robinson, andM. R. Azimi-Sadjadi, ‘‘A hybrid HMM-neural
network with gradient descent parameter training,’’ in Proc. Int. Joint Conf.
Neural Netw., Jul. 2003, pp. 1086–1091.

[24] S. E. Levinson, L. R. Rabiner, and M. M. Sondhi, ‘‘An introduction
to the application of the theory of probabilistic functions of a Markov
process to automatic speech recognition,’’ Bell Syst. Tech. J., vol. 62, no. 4,
pp. 1035–1074, Apr. 1983.

[25] J.-S. Lee and C. Hoon Park, ‘‘Hybrid simulated annealing and its applica-
tion to optimization of hidden Markov models for visual speech recog-
nition,’’ IEEE Trans. Syst. Man, Cybern. B, Cybern., vol. 40, no. 4,
pp. 1188–1196, Aug. 2010.

[26] M. Lalaoui, A. El Afia, and R. Chiheb, ‘‘Hidden Markov model for a
self-learning of simulated annealing cooling law,’’ in Proc. 5th Int. Conf.
Multimedia Comput. Syst. (ICMCS), Sep. 2016, pp. 558–563.

[27] A. E. Afia, M. Lalaoui, and R. Chiheb, ‘‘A self controlled simulated
annealing algorithm using hidden Markov model state classification,’’
in Procedia Computer Science, vol. 148. Amsterdam, The Netherlands:
Elsevier, 2019, pp. 512–521.

[28] D. Paul, ‘‘Training of HMM recognizers by simulated annealing,’’ in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process. ICASSP, Apr. 1985,
pp. 13–16.

[29] L. Shao, F. Zhu, and X. Li, ‘‘Transfer learning for visual categoriza-
tion: A survey,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 5,
pp. 1019–1034, May 2015.

[30] R. Ribani and M. Marengoni, ‘‘A survey of transfer learning for convolu-
tional neural networks,’’ in Proc. 32nd SIBGRAPI Conf. Graph., Patterns
Images Tuts. (SIBGRAPI-T), Oct. 2019, pp. 47–57.

[31] J. Brownlee. (2017). A Gentle Introduction to Transfer Learning
for Deep Learning. [Online]. Available: https://machinelearningmastery.
com/transfer-learning-for-deep-learning/

[32] W. Fan, I. Davidson, B. Zadrozny, and P. S. Yu, ‘‘An improved categoriza-
tion of Classifier’s sensitivity on sample selection bias,’’ in Proc. 5th IEEE
Int. Conf. Data Mining (ICDM), Nov. 2005, pp. 605–608.

[33] A. Argyriou, M. Pontil, Y. Ying, and C. A. Micchelli, ‘‘A spectral reg-
ularization framework for multi-task structure learning,’’ in Proc. Adv.
Neural Inf. Process. Syst., New York, NY, USA: Curran Associates, 2008,
pp. 25–32.

[34] T. A. Shawly, A. A. Elghariani, J. Kobes, and A. Ghafoor, ‘‘Architec-
tures for detecting real-time multiple multi-stage network attacks using
hidden Markov model,’’ 2018, arXiv:1807.09764. [Online]. Available:
https://arxiv.org/abs/1807.09764

[35] I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani, ‘‘Toward gen-
erating a new intrusion detection dataset and intrusion traffic char-
acterization,’’ in Proc. 4th Int. Conf. Inf. Syst. Secur. Privacy, 2018,
pp. 108–116.

[36] J. Cummings,M. Shirk, and P. Team.PulledPork. Accessed:May 28, 2020.
[Online]. Available: https://github.com/shirkdog/pulledpork

[37] E. Eldondev. (2011). Snort Rules. Accessed: May 28, 2020. [Online].
Available: https://github.com/eldondev/Snort

[38] T. Chadza, K. G. Kyriakopoulos, and S. Lambotharan, ‘‘Contemporary
sequential network attacks prediction using hidden Markov model,’’ in
Proc. 17th Int. Conf. Privacy, Secur. Trust (PST), Aug. 2019, pp. 1–3.

[39] B. Roblès, M. Avila, F. Duculty, P. Vrignat, S. Begot, and F. Kratz, ‘‘Meth-
ods to choose the best Hidden Markov Model topology for improving
maintenance policy,’’ in Proc. 9th Int. Conf. Modeling, Optim. Simulation
MOSIM, 2012, p. 1.

[40] L. Hubert and P. Arabie, ‘‘Comparing partitions,’’ J. Classification, vol. 2,
no. 1, pp. 193–218, Dec. 1985.

[41] E. Ramasso, ‘‘Inference and learning in evidential discrete latent Markov
models,’’ IEEE Trans. Fuzzy Syst., vol. 25, no. 5, pp. 1102–1114,
Oct. 2017.

TIMOTHY CHADZA (Member, IEEE) received
the B.Sc. degree in electrical engineering from
the University of Malawi (UNIMA)-Polytechnic,
in 2005, the M.Tech. degree in advanced
IT–networking and telecommunications from the
International Institute of Information Technology,
India, in 2011, and the M.Sc. degree in mobile
communication from Loughborough University,
in 2016, where he is currently pursuing the Ph.D.
degree with the Wolfson School of Mechanical,

Electrical, and Manufacturing Engineering. He has undergone training in
wireless networking at the International Centre of Theoretical Physics,
Italy, and National Information Technology, Poland. He is currently a
Lecturer in telecommunications with the Department of Electrical Engineer-
ing, UNIMA-Polytechnic. He is interested in wireless networking security
applied in wireless networks and mobile communication.

KONSTANTINOS G. KYRIAKOPOULOS (Mem-
ber, IEEE) received the B.Sc. degree in electri-
cal engineering from the Technological Educa-
tion Institute, Larisa, Greece, in 2003, and the
M.Sc. degree in digital communication systems
and the Ph.D. degree in computer networks from
Loughborough University, Loughborough, U.K.,
in 2004 and 2008, respectively. From 2008 to
2015, he was a Research Associate with the School
of Electronics, Electrical, and Systems Engineer-

ing, Loughborough University, involved mainly in the EPSRC projects and
successfully licensed research output from his work. Since 2016, he has been
an Academic Member of the Wolfson School of Mechanical, Electronics,
andManufacturing Engineering, LoughboroughUniversity. He has extensive
experience in computer network security, anomaly detection, contextual
awareness, and performance measurements in emerging network paradigms
and their applications. His research interests are in the areas of intelligent
decision-making using machine learning techniques, evidence theory, and
soft computing techniques.

SANGARAPILLAI LAMBOTHARAN (Senior
Member, IEEE) received the Ph.D. degree in signal
processing from Imperial College London, Lon-
don, U.K., in 1997. He was a Visiting Scientist
with the Engineering and Theory Center, Cornell
University, Ithaca, NY, USA, in 1996. He was
with Imperial College London, until 1999, where
he was a Postdoctoral Research Associate. From
1999 to 2002, he was with the Motorola Applied
Research Group, U.K., as a Research Engineer,

working on various projects, including the physical-link layer modeling and
performance characterization of the GPRS, EGPRS, and UTRAN. From
2002 to 2007, he was a Lecturer with King’s College London, London, and
a Senior Lecturer with Cardiff University, Cardiff, U.K. He is currently a
Professor in digital communications and the Head of the Signal Processing
and Networks Research Group, Loughborough University, Loughborough,
U.K. He has authoredmore than 250 conference papers and journal articles in
his research areas. His research interests include wireless communications,
convex optimizations, game theory, blockchain, and machine learning.
He is currently an Associate Editor of the IEEE TRANSACTIONS ON SIGNAL

PROCESSING.

VOLUME 8, 2020 134497

