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Abstract
The study assessed machine and deep learning algorithms’ ability to predict and classify the quality of maize grain seed 
for increased agricultural output. It relied on a dataset of 2460 maize seed samples examined by a KEPHIS ISTA-accredited 
seed testing facility. The K-NN and Logistic Regression algorithms performed the best in predicting and classifying seed 
samples, with 100% accuracy, precision, recall, and fi-score. The algorithms found that 46.2% of the grain maize seed was 
correctly classified as poor-quality seed due to improper handling, and poses a danger to productivity and food security 
for smallholder farmers. The Deep Learning Convolutional Neural Network presented a 92% accuracy with slight fluctua-
tions, mainly due to the simple and structured nature of the data, which was not in a grid-like or time series format. The 
study therefore recommends using K-Nearest Neighbor and/or Logistic Regression for grain seed classification when 
presented with well-structured agricultural data. Still, it also suggests expanding the methodology to other agricultural 
commodities and implementing seed management measures to prevent low-quality seed distribution. This includes 
training traders on how to maintain ISTA-required levels of germination, purity, and moisture content in their stores. The 
study highlights the significance of high-quality seeds for smallholder farmers to improve production and food security.

Article Highlights

•	 The K-Nearest Neighbor (KNN) and Logistic Regression algorithms achieved perfect classification performance, each 
reaching 100% accuracy, precision, recall, and F1-score in predicting maize seed quality.

•	 The deep learning Convolutional Neural Network (CNN) model also performed well, attaining a high accuracy of 92%, 
however, the results suggest that for simpler data structures, traditional machine learning models may outperform 
more complex deep learning approaches.

•	 The research underscores the potential of machine learning models to support seed quality monitoring and clas-
sification.
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1  Introduction

In recent decades, the growth of seed companies has brought about significant changes to Malawi’s seed industry. 
In the late 1980 s, ADMARC was the only seed seller in the nation, while the Seed Company of Malawi (NSCM) was 
involved in seed production [16]. Meanwhile, the country has over 25 and 700 seed companies and agro-dealers, 
respectively. This rapid expansion has created significant regulatory challenges for the Seed Services Unit (SSU), lead-
ing to increased instances of substandard seeds reaching farmers. Proliferation of substandard seeds has a potential 
negative impact on productivity. The current study follows the recent widespread prevalence of fake and low-quality 
seed reaching farmers, which has affected crop productivity and food security in Malawi [22].

Malawi’s economy is largely agro-based, making a well-functioning seed system essential for sustained economic 
development. According to Haug et al. [14], seed is a fundamental input in crop production. Access to quality seed 
is therefore crucial for improving household food security, as it carries the genetic potential that determines crop 
productivity, disease resistance, and tolerance to environmental stresses such as drought. Hunga et al. [16] also 
emphasize the importance of providing farmers with access to high-quality, improved seed varieties. Moreover, they 
highlight that the current seed system is inefficient, noting that it is uneconomical for Sub-Saharan African countries, 
such as Malawi, to continue spending scarce foreign exchange on fertilizers with high import content, as seen in 
Malawi’s Affordable Input Subsidy Program. This underscores the urgent need to invest in the provision of quality 
seeds to enhance productivity and strengthen food security at the household level. The quality of seed input plays a 
crucial role in determining agricultural outcomes, influencing crop yield, disease resistance, and environmental stress 
tolerance. Recent studies have emphasized that access to high-quality seeds is essential for enhancing farm produc-
tivity and ensuring food security in developing agricultural economies. The Seed Services Unit (SSU) is mandated 
to carry out seed quality tests before it reaches the market for farmers’ uptake [12]. Physiological seed quality tests 
are done through DNA fingerprinting and Grow-Out-Trials (GOT). As such, the current study builds on a multi-year 
study conducted by the Alliance for a Green Revolution in Africa [3], which collected a total of 2460 seed samples 
and tested at the Kenya Plant Health Inspectorate Service (KEPHIS) lab, an International Seed Testing Association 
(ISTA) accredited seed testing laboratory for physical purity and germination tests, which follows ISTA rules. The seed 
samples of maize were collected from seed company warehouses and agrodealer shops across Malawi.

The current seed quality assessment system, while thorough, faces significant challenges. Traditional testing meth-
ods, such as DNA fingerprinting and Grow-Out Trials (GOT), conducted at accredited facilities like KEPHIS, are both 
time-consuming and costly [4]. This has led to a concerning trend where farmers increasingly rely on informal seed 
sources, potentially compromising crop quality and yield potential.

Classifying seed quality is essential for agricultural development, although it involves time-consuming and costly 
processes. With over 25 seed companies in the country producing seed on more than 18,000 ha of land, it is quite 
difficult for the country’s Seed Services Unit to monitor and classify all the seed. A machine or deep learning model 
can assist the Seed Services Unit in classifying the quality of the seeds on the market. This study leverages recent 
advancements in machine learning, providing an opportunity for the Seed Services Unit to adopt and embrace these 
technologies to address this challenge.

The current study provides an assessment of four machine learning models and one deep learning model that 
can help classify seed samples as poor or good quality based on the ISTA rules of purity, germination, and moisture 
content. Using the seed samples collected and tested for purity, germination, and moisture content by the Alliance 
for a Green Revolution in Africa [3] through KEPHIS, classification models were employed to assess the quality of the 
seed. The integration of machine learning in seed quality assessment represents a significant opportunity for mod-
ernizing agricultural practices in Malawi. However, questions remain regarding the accuracy, reliability, and practical 
implementation of machine learning technologies in real-world settings—a concern that underlies the Seed Services 
Unit’s cautious consideration of adopting such advanced tools [11]. This study seeks to bridge this knowledge gap 
by providing empirical evidence on the effectiveness of machine learning approaches in seed quality classifica-
tion. The study adds to existing literature in two ways. First, it integrates domain-specific indicators for seed quality 
assessment, which align with ISTA standards and certification requirements, making the findings applicable for seed 
regulators. Second, the study employs and compares multiple classifiers, which is crucial for a robust assessment in 
the selection and adoption of similar activities in the agricultural sector.
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2 � Methodology

This section describes the methods and materials used in the classification of the grain seed samples. The section 
further provides the machine and deep learning models and their respective architectures. Again, the section pro-
vides a schematic conceptual framework that provides a flow of the detailed specifications undertaken in fitting the 
classification models. The section further explains the seed samples’ data based on their purity, germination, and 
moisture content tests. The data is then processed for training and evaluated based on F1-score, precision, accuracy 
and recall. This provides a basis for the assessment of the models and comparison.

2.1 � Conceptual framework

Figure 1 illustrates the conceptual framework of the methodology used in the study. It outlines the steps taken to 
employ the machine learning algorithms on the seed sample data. The schematic presentation indicates that the study 
began with the acquisition of maize seed sample data, which was pre-processed in preparation for the machine learning 
algorithms. The data was then divided into training and testing datasets, allowing the algorithms to learn through the 
training process. Consequently, the Bayes, Random Forest, K-Nearest Neighbor, and Logistic Regression machine learn-
ing algorithms were employed to train the dataset. Additionally, a complementary deep learning Convolutional Neural 
Network was deployed to evaluate how the seed data responds to complex deep learning models. Finally, the predicted 
values of the five algorithms were assessed in terms of their accuracy, precision, recall, and f-1 score.

Fig. 1   A conceptual frame-
work of the methodology 
used
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2.1.1 � Pre‑processing, feature extraction, and reduction methods

The research started with a dataset comprising 2460 maize seed samples, assessed by a KEPHIS ISTA-accredited seed 
testing facility. Key features utilized for classification included physical purity, germination percentage, and moisture 
content. These features play a vital role in evaluating seed quality and are well-established in seed science for their pre-
dictive value in discerning whether a seed lot qualifies as “good” or “poor” quality.

In terms of pre-processing techniques, the initial step in the data pipeline involved splitting the dataset into training 
and testing subsets. Specifically, 80% of the data (1968 samples) were allocated for training the machine learning models, 
while the remaining 20% (492 samples) were reserved for evaluating model performance. This stratified split ensured 
that both subsets are representative of the overall data distribution, which is essential for reliable model validation and 
to prevent overfitting.

With regards to feature extraction methods, the study did not employ any advanced feature extraction techniques. 
Instead, it relied on the direct use of the three measured attributes by KEPHIS. This approach is justified when the features 
are already highly informative and directly related to the classification task, as is the case with seed quality assessment. 
The features, which are physical purity, germination percentage, and moisture content, were used in their original form, 
as measured by the seed testing facility. The use of domain-specific, expert-validated features can often outperform 
more complex feature engineering in such scenarios [27].

No feature reduction (such as Principal Component Analysis or other dimensionality reduction techniques) or feature 
selection (such as recursive feature elimination or filter-based methods) was applied. All three features were retained 
for model training and evaluation. This decision is reasonable given the small number of features and their established 
relevance to seed quality classification. In cases where the feature set is limited and each feature is known to be impor-
tant, feature reduction may not yield significant benefits and could even risk compromising valuable information [23].

2.2 � Dataset

A total of 2460 seed samples were collected and tested by the SSU through the KEPHIS ISTA-accredited seed testing 
laboratories for physical purity and germination tests following ISTA rules. These seed samples were collected from the 
25 seed companies in Malawi, from a sample of their 700 agro-dealers. The seed samples were tested for purity, germi-
nation percentage, and moisture content through grow-out trials and DNA fingerprinting. Table 1 provides the average 
physiological seed quality features of the tested seed samples. According to the ISTA rules, maize seed is deemed to be 
of good quality if the purity test is greater than or equal to 99% and the germination percentage is greater than or equal 
to 90%, and the moisture content is less than 13% [3]. All samples were in good condition and weighed at least 1 kg, 
which is the required submitted sample by ISTA Rules for seed testing [3]. On average, most seed samples passed the 

Table 1   Summary of average 
purity, germination rate, and 
moisture content for maize 
seed samples collected from 
various sources

Variety Purity (≥ 99%) Germination (≥ 90%) Moisture 
(< 13%)

DKC 80-33 99.9 80.5 13.2
DK 777 99.9 97.3 12.1
SC 719 99.8 97.3 12.1
SC 403 99.7 57.3 6.8
PAN 53 98.9 80.0 12.0
MH 26 99.8 85.8 6.4
ZM523 99.5 72.5 9.9
MH40 A 89.9 94.0 8.2
ZM623 99.9 65.0 11.5
MH44 A 100.0 97.0 9.4
MH36 99.9 38.8 9.4
MH40 A 100.0 98.3 13.1
ZM623 100.0 91.8 11.9
MH30 99.9 56.0 11.8
MH31 100.0 98.8 11.9
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purity test, however, there existed germination problems and a few cases of high moisture content. This implied that 
some seeds were classified as poor quality due to failure in any of the three tests.

2.3 � Review of machine and deep learning classification models

Machine learning, a branch of data science, focuses on developing algorithms that can learn underlying patterns and 
rules from a dataset [18]. These learned algorithms are then used to predict irregularities and unknown events. Common 
machine learning methods include Naïve Bayes, Random Forest, K-Nearest Neighbors, Logistic Regression, and deep 
learning techniques such as Convolutional Neural Networks.

The Naïve Bayes classifier, for instance, is a statistical method grounded in Bayes’ theorem. It assumes that features in 
the dataset are conditionally independent of each other. In this approach, seed sample data is classified independently 
based on its eigenvector components, allowing for efficient probabilistic stratification. A sample vector x is generated 
based on a defined dictionary with n elements, within a sample space W, and its frequency in the test data d. This can 
be mathematically presented as follows [15]:

Following the spread of the provided training data, the seed samples can then be divided into m classes following 
the classification vector of the data frame. This can be presented by the following vectors:

where D is the vector used to train the Naïve Bayes Algorithm, on the basis that the classification with the maximum 
probability solves the argmaxp

{
yi|xi

}
. This creates a classifier model which estimates the probability of that given set of 

inputs ( X  ) for all possible values of the class variable Y .
Hence,

In this case, P(yi) for each P(X ) is calculated from the training data set D. In this case, Bayes provides that the vector X 
is classified through the highest probability value from the training dataset.

The assumptions of the Bayes algorithm include: (i) feature independence where all data features are conditionally 
independent of each other; (ii) normal distribution where all continuous features are expected to follow a normal distri-
bution within each class; (iii) multinomial distribution of discrete features within each class; (iv) all features are equally 
important; and (v) no missing data. As such, if the data shows different characteristics from these assumptions, the clas-
sification performance will not be robust.

Random Forest is another supervised learning algorithm that builds a forest of decision trees trained through a 
bagging method [18]. Classification is purely based on the number of votes of the results for each tree, which, through 
integration, puts multiple trees together. In this case, its decision tree is a classifier of good quality or poor-quality seed. 
In terms of the implementation, given a sample data set with N trees, the algorithm will produce N classification results. 
These are then integrated, and the category with the most votes becomes the final output of the classification through 
a bagging method [18]. According to El Mir et al. [10], According to El Mir et al. [10], the Random Forest model operates 
based on the following key principles: (i) N represents training samples, and M represents the number of features,(ii) m 
represents the number of input features which determine the decision result of each node in the tree; (iii) a training set 
obtained from bootstrap sampling is formed which sampled N times from every N samples; (iv) m features are randomly 
selected from each node, which further helps in calculating the optimal splitting mode; and (v) each tree grows without 
any form of pruning, and later adopted immediately after the edifice of a normal tree classifier.

(1)W =
{
w1,w2,… … ,wn

}

(2)X =
{
x1, x2,… … , xn

}

(3)D =
{
d, d2,… … , dn
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According to El Mir et al. [10], given a group of classifiers h1(x), h2(x),… hk(x) and with a random training set from 
the distribution of a random vector Y, X. Then the margin function is given as follows:

In this case, the indicator function is given by I
(
hk(X )

)
 ; and the margin events the degree to which the mean num-

ber of votes at X, Y for the right class surpasses the mean vote for any other class. As such, the bigger the margin, 
the more confidence is produced from the classification [18]. The generalization error can be presented as follows:

where X, Y provide for the probability that is over the X, Y space. In a random forest framework, hk(X) = h(X ,Θk) . To that 
extent, the strong law of large numbers then implies that as the number of trees increases, all the sequences of Θ1,… 
PE* converges to the following function:

K-Nearest Neighbor (KNN) is another supervised machine learning classification algorithm that classifies sample 
data based on the known data category and then scores the test data according to the training sample data. The 
algorithm is simple to use, has a fast training time, and has a good prediction effect [2].

Given two categories in this case, good quality and poor-quality seed, and given a new data point of a seed attrib-
ute, x1 , the KNN algorithm can help in determining whether this lies in the category of good-quality or poor-quality 
seed. Graphically, this has been presented in Fig. 2

The algorithm thus works by minimizing the Euclidean distance, which is the distance between the new data point 
x1 , and the existing data points in categories A and B. This can be presented as follows:

Through the calculation of the Euclidean distance, the algorithm produces nearest neighbors to the new data 
point and hence classifies the data point from the minimum Euclidean distance.

Logistic regression algorithm is both a statistical and machine learning algorithm used in classifying binary prob-
ability distribution problems, in this case good good-quality and poor-quality seeds. The algorithm uses a sigmoid 
function presented as follows:

where P(y = 1) is the probability of success i.e., output being a 1; � is the model’s parameter weights and x provides the 
input feature. The sigmoid function is thus a statistical function that maps the predicted probabilities of getting a 1. The 
function maps any real value within the range of a 0 and 1 [9].

(6)mg(X , Y) = avkI
(
hk(X ) = Y

)
−maxj≠kavkI

(
hk(X ) = j

)

(7)PE∗ = PX ,Y (mg(X , Y) < 0)

(8)PX ,Y (PΘ(h(X ,Θ) = Y) −maxj≠YPΘ(h(X ,Θ) = j) < 0)

(9)Euclidean distance =

√(
X2 − X1

)2
+
(
Y2 − Y1

)2

(10)P(y = 1) =
1

1 + e−�Tx

Fig. 2   Visual representation 
of KNN classification showing 
the predicted category of a 
new data point based on its 
nearest neighbors (Source: 
Adapted from El Mir et al. [10])
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According to Rymarczyk et al. [24], if we consider a binary choice response variable data set, then for each finite ele-
ment, there exists a training set D =

{
(xi , yi)

}
 where xi is the input vector and yi is the response vector. Therefore, xi ∈ Rm , 

yi ∈ {0,1} for all 1 ≤ i ≤ n . Again, m denotes the number of seed sample tests. In this case, if the finite test records good 
quality seed, then yi = 1 , otherwise yi = 0 . The training set can then be presented as D =

{
(xi , yi)

}
  where the following 

matrix applies:

The objective here is to develop a classifier such that f ∶ Rm → {0,1} , and this allows the categorization of the seed 
sample into good quality seed categories, yi = 1 or poor-quality seed categories yi = 0 based on the observed xi ∈ Rm.

Lastly, the study uses a Convolutional Neural Network (CNN) algorithm to classify the maize seed samples. In detail, 
CNN is a class of deep learning models, more advanced as compared to machine learning algorithms, and has the capacity 
of processing image data, and even grid data [11]. The model is generally presented by a 1D convolutional layer, which 
can be presented as follows:

where Oij is the seed quality classification outcome at position i,j;  i +mj + n presents the input features position at i + m, 
j + n; wmn is the weight of the input features at the position (m,n) in the kernel with the dimensions of the kernel presented 
by M and N; and b presents the bias or error term.

Next is to apply an activation function to the convolutional layer. The current study imposes a Rectified Linear Unit 
(ReLU), with a pooling layer that can be presented as follows:

where Rij represents the pooling region, which reflects the outcome (i,j). Through a number of convolutional and pooling 
layers, the end process produces a fully connected layer.

Most importantly, the loss function is crucial in explaining the error in terms of how good the CNN is in correctly 
classifying the true values of the seed samples through the model’s predictions. Since the outcome in this case is binary 
(good or poor-quality seed), the study imposes a cross-entropy loss function, which can be presented as follows:

Here, the whole loss function aims to assess the probability of classifying the true seed labels ( yi ) from the predicted 
values ( ̂yi).

2.3.1 � Classifiers selection process and justification

The selection of specific classifiers used in this study was guided by several key considerations supported by recent lit-
erature in agricultural machine learning applications (see, [5, 13, 19, 20]). Naive Bayes was selected for its computational 
efficiency and proven effectiveness in agricultural classification tasks where feature independence can be assumed [6, 
25]. Recent studies have demonstrated its utility in seed quality assessment, particularly when dealing with categorical 
and continuous features like purity and germination rates [1]. The classifier’s probabilistic approach aligns well with the 
inherent variability in biological systems.

Random Forest was chosen for its robust performance in handling non-linear relationships and its ability to manage both 
numerical and categorical data without extensive preprocessing. Wang et al. [27] highlighted Random Forest’s effectiveness 
in agricultural applications, noting its capability to handle the natural variations in seed characteristics while maintaining 
interpretability, which is a crucial factor for agricultural stakeholders. K-Nearest Neighbors (KNN) was selected based on their 
strong performance in similar agricultural classification tasks, particularly where clear decision boundaries exist between 
quality classes. Recent research by Li et al. [18] demonstrated KNN’s effectiveness in seed classification, attributing its success 

(11)Y =

⎡
⎢⎢⎣

y1
y2
yn

⎤
⎥⎥⎦
, X =

⎡
⎢⎢⎣

x11 ⋯ xim
⋮ ⋱ ⋮

xn1 ⋯ xnm

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣
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⎤
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to the algorithm’s ability to capture local patterns in feature space, which is particularly relevant for seed quality parameters. 
Logistic Regression was included as a baseline linear classifier, chosen for its interpretability and well-established theoretical 
foundation. Kumar and Singh [17] noted its continued relevance in agricultural applications, particularly when the relation-
ship between input features and quality classifications follows a roughly linear pattern. Its simplicity and transparency make 
it valuable for validation purposes.

Lastly, the Convolutional Neural Network (CNN) was selected to represent modern deep learning approaches, following 
recent trends in agricultural machine learning applications. Patel et al. [23] documented CNN’s superior performance in 
capturing complex patterns in agricultural data, particularly when dealing with multiple quality parameters. Its inclusion 
allows for comparison between traditional machine learning and deep learning approaches.

The selection process therefore, followed a systematic approach which included (i) Literature Review (This involved analysis 
of recent publications in agricultural machine learning); (ii) Identification of successful classifier applications in seed quality 
assessment; (iii) Review of performance metrics in similar classification tasks; (iv) Technical considerations (Algorithms were 
evaluated for compatibility with the dataset’s size and feature types); (v) Scalability for larger datasets; (vi) Ease of deployment 
in agricultural settings and interpretability for stakeholders; and (vii) Inclusion of both traditional and modern approaches. 
This classifier selection strategy aligns with current best practices in agricultural machine learning, as outlined in recent com-
prehensive reviews [7, 27]. The combination of traditional statistical methods (Naive Bayes, Logistic Regression), ensemble 
approaches (Random Forest), instance-based learning (KNN), and deep learning (CNN) provides a robust framework for 
evaluating different approaches to seed quality classification.

2.3.2 � Accuracy assessment of the machine learning algorithms

A number of evaluation methods exist that help in determining the effectiveness of machine learning models. Nonetheless, 
overall accuracy, precision and recall are the most robust measures that are often used [18]. To explain these in detail, there 
is a need to first understand whether the seed sample classification result was a true positive (TP), a false positive (FP), a true 
negative (TN), or a false negative (FN). Table 2 provides the details of the classification of the seed samples.

Precision (πi) is one of the measures used in the evaluation of machine learning algorithms. It is the conditional probability 
that a random seed sample s is classified under the correct category ci . Precision hence, determines the classifiers’ ability 
to place a seed sample correctly in its category, as opposed to all seed samples placed in that category, both incorrect and 
correct. This can be given as follows:

The second evaluation measure is Recall ( �i ) which measures the probability that some random seed sample s should be 
classified under its category ci . This can be presented as follows:

The last measure is Accuracy ( Ai ) which is a measure of the actual categorization technique in producing a true positive 
(TP). This can be presented as follows:

(15)�i =
TPi

TPi + FPi

(16)�i =
TPi

TPi + FNi

(17)Ai =
TPi + TNi

TPi + TNi + FPi + FNi

Table 2   Classification 
categories and criteria for a 
seed sample based on quality 
parameters

Classification code Details

TP A seed sample is being classified correctly in relation to its category
FP A seed sample that is classified as related to the category incorrectly
TN A seed sample that is classified as not related to the category correctly
FN A seed sample that is classified as not related to the category is incorrectly
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Nonetheless, data scientists sometimes combine precision and recall to get a better perspective of their classifier 
through the f1-score ( F� ). This can be presented as follows:

where � is recall and � is precision; � is the goal of the evaluation and is always a positive parameter. In this case, if preci-
sion is deemed to be less desirable to recall, then the value of � converges to zero.

2.4 � Implementation details

The study was implemented using the NumPy library in PyCharm Integrated Development Environment (IDE). The scikit-
learn tool was then employed which was built on NumPy and matplotlib. It is a very powerful and efficient tool for 
predictive analysis. A Python code was written and executed in a 10 th Generation Intel Core i7-10700 F with a NVIDIA 
GeForce RTX 3050 Ti graphic card of 4 GB GDDR6 memory. The training set comprised of 80% of data, with the remaining 
20% used at the testing stage. During the training procedure, the study employed strategies like model check-pointing 
and early stopping, which prevented over-fitting the models and hence saving the most effective algorithm. Python, 
version 3.10. was used with key libraries including pandas 1.5.3 for data manipulation and preprocessing; scikit-learn 
1.2.2 for implementing traditional machine learning algorithms (Naive Bayes, Random Forest, KNN, Logistic Regression); 
tensorflow 2.11.0 for building and training the Convolutional Neural Network (CNN); and matplotlib 3.7.1 and seaborn 
0.12.2 for data visualization and plotting confusion matrices.

3 � Results

3.1 � Descriptive statistics

First, the seed samples were tested for purity. The purity test determines the percentage of the weight of pure seed, the 
inert matter, and even the presence (contamination) of other crop seeds in a seed sample [22]. DNA fingerprinting was 
used for purity and germination tests. DNA is the genetic material that codes for the expression of phenotypic traits. 
Among different types of DNA markers available, Single Nucleotide Polymorphism (SNP) markers are commonly used 
because of their low genotyping cost per data point, high genomic abundance, locus-specificity, codominance, simple 
documentation, and potential for high-throughput analysis. Therefore, SNPs were markers of choice for genetic purity 
test applications for maize seed samples. The aim was to assess whether the parental inbred line meets genetic purity 
standards, determine the genetic variants, verify the appropriate hybrids, ensuring that producers and customers receive 
what they expect, and measure the extent of selfing and outcrossing in hybrid seed lots. Inbred lines are expected to be 
highly genetically pure or homogeneous. Any inbred line with more than 5% but less than 15% genetically heterozygous 
implies that loci require purification by performing ear-to-row selection while one with > 15% heterozygous loci implies 
that the sample is contaminated with unrelated genetic material and requires to be either discarded or extensively 
reselected for the original genotype.

Following ISTA rules, a purity percentage above 99% is considered good quality maize seed. Figure 3 shows that all 
the seed samples of maize hybrid and Open Pollinated Varieties (OPVs), performed above minimum physical purity 
percentage which ranged from 99.0 to 100.0%, except for MH40 A maize hybrid from Global seeds where some seed 
samples performed way below the minimum test score. Overall, the purity tests signify that the seed lots were handled 
as per requirement and had little or no inert matter and other crop seeds. In Fig. 3, the bars show purity percentage of 
the seeds, with the x-axis showing the seed variety and company name. The seed samples were subjected to both Seed 
Services Unit (SSU) and KEMPHIS tests laboratories.

Germination percentage is another important factor in determining the quality classification of seed [22]. The study 
used the genetic identity test to have an assurance that seed producers are using the right parental inbred lines. This 
was done by comparing the molecular marker profiles of specific parental inbred line(s) with the original source of the 
line(s). In cases where there was no access to a reference profile from the original source, the genetic distance-based 
approach was adopted. When two or more seed sources of the same inbred line show > 5% of genetic distance or marker 
mismatch proportion, they were considered as different, otherwise, they were considered identical. Maize seed samples 
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are classified as of good quality if the germination percentage exceeds 90% [12]. Figure 4 shows that maize seed samples 
germination percentage ranged from 29–100%. Out of the 2460 maize seed samples, 18 maize seed samples failed the 
germination test (DKC 80-33 one sample, ZM 523 one sample, MH 26 one sample, MH 36 three samples, ZM 623 two 
samples, PAN 53 four samples, MH 30 two samples, SC 403 two samples). This implies that these seed samples had poor 
germination quality and were not suitable for planting [12]. Note that the x-axis shows the seed varieties and the com-
panies, with the bars showing the average germination percentage based on the SSU and KEMPHIS test laboratories.

Again, moisture content is another important feature that determines the quality of grain seed. The initial moisture 
content of maize seeds using the Gravimetric method was used for assessing the moisture content. The seed samples 
were first weighed using a high-precision analytical balance with an accuracy of ± 0.001 g, weighing two replicates of 
the ground seed sample. The use of a high-precision balance is essential to detect even minor changes in mass, which 

Fig. 3   Maize seed purity by variety and company, highlighting differences in quality across various seed providers

Fig. 4   Maize seed germination percentage by variety and company, illustrating differences in seed quality across various providers
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directly affect the accuracy of the moisture determination. The weighed samples were then transferred into pre-dried, 
pre-weighed aluminum moisture dishes, for the dishes to be placed in a forced-air oven set at 103 °C. The samples were 
dried for 17 h. The percentage difference in initial weight and final weight after drying is the moisture content.

For maize, a moisture content of less than 13% is considered for good quality seed [12]. Nonetheless, the seed samples 
had some samples that exceeded the maximum threshold. For instance, some DK 80-33 samples, MH 26, ZM 523, and 
ZM 623. Such respective samples are hence considered as poor-quality seed (Table 3).

3.2 � Discussion

Table 4 provides the estimation results from the Naïve Bayes, Random Forest, K-Nearest Neighbor, Logistic Regression, 
and CNN classification algorithms. The output of the classification is the y prediction matrix (y_pred), which provides the 
prediction results of the test data that was split from the training data [10], and this is presented in the second column. 
Thus, 20% of the maize grain seed samples data was left to undergo the testing of the algorithm (Naïve, Random Forest, 
KNN and Logistic) which was trained on the 80% of the data (training data) in order to test the ability of the model to 
learn and apply its classification on any given maize grain seed sample.

The findings show that the algorithms classified and predicted the test data differently, yielding a different level and 
measure of accuracy, precision, recall, and f1-score. Nonetheless, the KNN and Logistic Regression were the two highest 
performing algorithms predicting and classifying the test data with a 100% accuracy, precision, and f1-score. As such, the 
test seed samples were 53.8% and 46.2% good-quality and poor-quality grain seed, respectively. This shows that one or 
more of the three attributes of purity, germination, and moisture content were lacking in 46.2% of the grain maize seed. 

Table 3   Moisture content 
levels of maize seed samples 
collected from different 
sources, indicating variations 
in seed quality

Seed company Variety Moisture 
content % 
(13%)

BAYER MW DKC 80–33 11.6–13.4
DK 777 11.4–12.9

SEEDCO MW SC 719 11.7–12.4
SC 403 5.1–12.8

PANNAR SEED PAN 53 11.7–12.2
DEMETER AG MH 26 4.8–13.6

ZM523 5–13.7
MUSEKO Ltd MH40 A 8.1

ZM623 8.1–13.5
MH44 A 7.9–12
MH36 7.8–12.2

Global seeds MH40 A 12.2
Panthochi farm seed ZM623 11.9–12
Pindulani seed ZM623 11.7–12
Peacock seeds MH30 11.7–12
Premium seeds MH31 11.7
Mgom’mera seeds ZM623 12.3

Table 4   Performance metrics of fitted classifiers, including accuracy, precision, recall, and F1 score for each model

Classifier Prediction of the test data Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Naïve Bayes 44.9% good quality; 55.1% poor-quality 73 77 73 75
Random Forest 41.4% good quality; 58.6% poor-quality 71 72 66 63
KNN 53.8% good quality; 46.2% poor-quality 100 100 100 100
Logistic 53.8% good quality; 46.2% poor-quality 100 100 100 100
CNN 49.5% good quality; 50.5% poor-quality 92 100 85.71 92.31
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According to Haug et al. [14], low-quality seed circulation is a very big problem that has affected food security in Malawi, 
Tanzania, and Ethiopia. Hunga et al. [16] also called for the need to conduct a comprehensive assessment/audit of the 
Malawian seed system with a particular focus on the quality of seed sold in the market. Their qualitative findings further 
showed a number of complaints about the low germination percentage in most smallholder maize farms.

Furthermore, the classification quality with regards to accuracy was followed by CNN (92%), Naïve Bayes (73%), and 
Random Forest (71%). Precision was another evaluation criterion that was used. Precision provides the ratio of the correct 
predicted good quality seed samples (True Positives) to the sum of correct predicted good quality seed (True Positives) 
and the incorrectly predicted good quality seed (False Positives). Again, KNN and Logistic regression provided 100% 
precision in the classification as opposed to Naïve Bayes (77%) and Random Forest (72%). On the other hand, recall pro-
vides the ratio of the true positive predictions (correctly classified good quality seed) to all the total actual true positives 
[15]. This is also called the true positive rate [24]. The findings again show 100% true positive rate in KNN and Logistic 
against the 73 and 66% in Naïve Bayes and Random Forest, respectively. Lastly, the f1-score provides a combination 
of precision and recall, representing the trade-off between the two measures. Values closer to 100% imply a balance 
in attaining the two [9]. KNN and Logistic regression provided f1-scores of 100% as opposed to Naïve Bayes (75%) and 
Random Forest (63%).

Scholars like Ali et al. [2], Hillel et al. [15] and Rymarczk et al. [24] have all demonstrated the effectiveness of the KNN 
and Logistic Regression in the classification of binary outcome classes. This further explains why the algorithms perfectly 
classified and predicted the grain seed samples with a higher level of accuracy, precision and recall. Random Forest and 
Naïve Bayes however perform better in classifying a number of nodes and trees, classifying based on votes (random 
forest) and probability weights (Bayes) of different multiple instances [9]. This further explains the minimal efficiency in 
the prediction of the binary outcomes provided in the grain seed samples.

These findings also align with recent literature, as they both confirm and extend the understanding of algorithm 
suitability for structured agricultural data. The superior performance of KNN and Logistic Regression aligns with the 
findings of Wang et al. [27], who reported that instance-based and linear models often outperform more complex 
algorithms in agricultural quality assessment tasks, particularly when the dataset is well-structured and the features 
are clearly defined. In their study on rice seed quality, Wang et al. [27] found that KNN achieved 99.8% accuracy. They 
hence attributed this to its ability to effectively capture local data patterns and its robustness to noise in the dataset. 
Similarly, Logistic Regression has been highlighted for its interpretability and efficiency in binary classification problems, 
as demonstrated by Chen et al. [8], who found that Logistic Regression provided both high accuracy and transparency 
in wheat seed viability classification.

The slightly lower performance of the CNN in this study is noteworthy, as deep learning models are often presumed 
to outperform traditional algorithms. However, this result is consistent with the observations of Thompson et al. [26], 
who noted that CNNs and other deep learning models excel primarily with high-dimensional or unstructured data, 
such as images or time series, rather than tabular datasets with limited features. In the present study, the data consisted 
of structured, well-defined quality parameters (purity, germination, moisture), favoring simpler algorithms’ strengths.

The practical implications of these findings remain substantial for seed regulatory agencies and agricultural stakehold-
ers in developing countries. The high accuracy and computational efficiency of KNN and Logistic Regression suggest 
that these models can be readily integrated into automated seed quality assessment systems, reducing the reliance on 
labor-intensive manual testing. This is particularly relevant for resource-limited settings, where cost-effective and scal-
able solutions are essential [28].

With regards to policy alignment of the results, Alliance for a Green Revolution in Africa [3] further conducted a seed 
market study that focused on assessing the handling of grain seed on the market. The authors found rampant misman-
agement and handling of grain seed on the market that results in loss of the quality of the seed. Figure 5 shows some of 
the mishandling of seed that leads to poor-quality seed circulation on the market. Some of the issues include not using 
pallets to raise the seed off the floor to prevent increasing the moisture content; poor packaging of seed, which results 
in some of the seed packets being burst open; and splitting of the seed by vendors to sell in smaller quantities for dry 
season farming [3].

3.3 � Receiver operating characteristic (ROC) Curves

Further to estimating the accuracy, precision, recall, and F1-scores, the models were further tested for their Receiver 
Operating Characteristics (ROCs). The ROC provides the area under the curve, and a random classifier is provided by a 
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dotted line. The curve measures the sensitivity, which is the true positive rate against the false positive rate at different 
thresholds, through all probability estimates for the positive outcomes [11].

Figure 6 shows the ROC of the Naïve Bayes algorithm. The Area Under the Curve (AUC) of 0.84 shows that the model 
had an 84% ability to distinguish between the two classes of good-quality and poor-quality seed. Again, the model only 
provided 73% accuracy in classifying the true positives.

Figure 7 shows the ROC of the Random Forest algorithm. The Area Under the Curve (AUC) of 0.78 shows that the model 
had a 78% ability to distinguish between the two classes of good quality and poor-quality seed.

Figure 8 shows the ROC of the K-Nearest Neighbor algorithm. The Area Under the Curve (AUC) of 1.00 shows that the 
model had a 100% ability to distinguish between the two classes of good-quality and poor-quality seed. The accuracy 
of 100% further shows its ability to correctly classify all the true positives for the grain seed samples.

Just like the KNN, Fig. 9 shows the ROC of the Logistic Regression algorithm. The Area Under the Curve (AUC) of 1.00 
again shows that the Logistic classification model had a 100% ability to distinguish between good-quality and poor-
quality seed classes. The accuracy of 100% further shows its ability to correctly classify all the true positives for the grain 
seed samples. This again shows that the KNN and Logistic Regression were the best models in the classification of the 
maize grain seed samples.

Figure 10 presents the model accuracy and model loss over epochs. Through running the cross-entropy loss function, 
the training and validation accuracy were presented. The findings reveal that the CNN model performance improved 
drastically for both training and validation sets in the early stages and then later on stabilized. Most importantly, both 
the training and validation loss drops with an increase in epochs, further detailing the good performance of the algo-
rithm. However, an accuracy level of above 92% was achieved for the CNN model. The slight fluctuations are mainly due 

Fig. 5   Comparison of seed 
storage practices: direct floor 
storage (left) versus burst seed 
packets (right), highlighting 
potential risks to seed quality 
(Source: Alliance for a Green 
Revolution in Africa [3])

Fig. 6   Receiver operating characteristic (ROC) curve for the Naive Bayes classifier, illustrating the trade-off between sensitivity and specific-
ity
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to the fact that simple nature of the data, which is not more of a grid-like or time series in nature, might not require a 
complicated deep learning algorithm for classification [10, 11].

3.4 � Confusion matrices

Further to estimating the ROCs and the model accuracy and loss functions of the fitted algorithms, the study computed 
the confusion matrices for the models in order to visualize the number of correctly and incorrectly classified seed samples. 
Following Rymarczk et al. [24], the diagonal of the matrix provides the seed samples, which are correctly classified. On 
the other hand, the off-diagonal provides the seed samples that have been incorrectly labeled or classified. The current 
study hence utilizes the confusion matrix as an additional performance evaluation tool. This further provides for a detailed 
analysis of the tested models’ performance in the maize grain seed samples classification.

It should be noted that the confusion matrix provides the following metrics: (1) True Positives (TP); (2) True Nega-
tives (TN); (3) False Positives (FP); and (4) False Negatives (FN). Figure 11 shows that KNN and Logistic Regression 
provide robust performance in accurately classifying the seed samples with minimal (zero) errors. It presents the 

Fig. 7   Receiver operating characteristics (ROC) curve for the random forest

Fig. 8   Receiver operating characteristics (ROC) curve for the KNN
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confusion matrix for the five classifiers used in this study. The results reveal distinct patterns in the predictive capa-
bilities and error distributions of each model, offering valuable insights for both practical deployment and future 
research. Two classifiers, KNN and Logistic Regression, achieved perfect classification, as evidenced by the absence 
of off-diagonal values in their confusion matrices. This indicates that these models were able to correctly identify 
all instances of both “Poor Quality” and “Good Quality” seeds. Such high accuracy is consistent with recent studies 

Fig. 9   Receiver operating characteristics (ROC) curve for the regression model

Fig. 10   Model training accuracy and loss for the convolutional neural network

Fig. 11   Non-normalized con-
fusion matrix for the classifiers
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that highlight the effectiveness of KNN and logistic models in agricultural classification tasks, particularly when the 
feature space is well-structured and the classes are separable [18, 28].

The CNN model came out third, demonstrating strong performance, with only a small number of misclassifications. 
This aligns with the growing body of literature supporting the use of deep learning for complex pattern recognition in 
agricultural datasets [27]. CNNs are particularly adept at capturing subtle differences, which may not be as easily dis-
cernible by traditional machine learning models. In contrast, the Naive Bayes and Random Forest classifiers exhibited 
higher rates of misclassification, particularly in distinguishing “Poor Quality” seeds. For Naive Bayes, the confusion matrix 
shows 520 poor-quality seeds misclassified as good, and 220 good-quality seeds misclassified as poor. Random Forest, 
while slightly better, still misclassified 470 poor-quality and 300 good-quality seeds. These findings suggest that while 
ensemble and probabilistic models can be robust, they may struggle with overlapping feature distributions or imbal-
anced datasets, as noted in recent research [1, 7].

The confusion matrices underscore the importance of model selection in agricultural applications. While deep learn-
ing and distance-based methods (CNN, KNN) offer superior accuracy, their computational requirements and need for 
larger datasets may limit their use in resource-constrained environments. Conversely, simpler models like Naive Bayes 
and Random Forest may be more interpretable and easier to deploy but could compromise on accuracy [23].

4 � Conclusions and recommendations

The present study provided an assessment and comparison of different machine learning algorithms in predicting and 
classifying the quality of maize grain seed for improved agricultural productivity. The study underscores the importance 
of good quality seed as it explains the output potential and food security status of the smallholder farmers in the country. 
Using a comprehensive dataset of 2460 maize seed samples tested by KEPHIS ISTA accredited seed testing laboratory, 
the study employed machine learning models and extracted part of the data for learning purposes and another part for 
testing to check if the models can correctly classify the seed based on purity, germination and moisture content. The 
findings revealed that the K-NN and Logistic Regression algorithms were the best and robust algorithms in the prediction 
and classification of the seed samples with an accuracy, precision, recall and fi-score of 100%. The findings further show 
that 46.2% of the grain maize seed was correctly classified as poor-quality seed which was due to poor handling of the 
seed on the market. This provides a threat to productivity and food security status of most smallholder farms.

A deep learning CNN algorithm was again tested which provided an accuracy of 92%. This is mainly because of the 
simple nature of the data which is not more grid-like or time series complicated way to employ such complex algorithms. 
The slightly lower performance of CNN challenges the assumption that deep learning consistently outperforms tradi-
tional algorithms in agricultural applications. This finding supports observations that simpler algorithms often prove 
more effective for structured agricultural data with well-defined features.

Moving forward, the study recommends the adoption of K-Nearest Neighbor and/or Logistic Regression in the clas-
sification of grain seed samples with clearer and well-defined features for improved crop productivity. Nonetheless, there 
remains room for employing other complex deep learning models to provide more robust measures in the classification, 
depending on the availability of the data to learn from, which includes actual specimens of the studied seed samples. 
There is again a need to extend the methodologies to the agricultural commodities to assess the ability of the models 
in accurately predicting and classifying the seed samples of other different grains, tubers, etc. Lastly, there is a need for 
reinforcing some measures in the handling of seed on the market to reduce the proportion of low-quality seed circula-
tion. This should involve training traders on effective ways of retaining the quality of seed in their shops to maintain the 
ISTA required levels of germination, purity, and moisture content.

5 � Limitations of the study

Although the study employed numerous classifiers to classify grain seeds, it is important to recognize potential limita-
tions that might affect the generalizability of the findings. One notable constraint is the nature of the dataset itself. The 
research utilized a relatively structured, non-grid-like dataset of 2460 maize seed samples tested by the Seed Services 
Unit and KEPHIS, ISTA-accredited laboratories. While this provides a controlled environment for model development, it 
may limit the effectiveness of more complex deep learning models, such as Convolutional Neural Networks (CNNs), which 
typically excel with richer, more structured data like images or time series. As a result, the CNN model underperformed 
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compared to traditional algorithms, suggesting that the data’s simplicity constrains the potential of advanced machine 
learning techniques. Additionally, the scope of the study is limited to maize seeds and may require validation in other 
sectors. The study acknowledges that extending the methodology to other crops or sectors and employing more complex 
datasets would improve the accuracy and validation of the findings.
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