

Factors Affecting Sustainability of Borehole Water Supply in Blantyre Rural, Malawi: A Case of Matindi Area

F.L. Kilembe, H.W.T. Mapoma*, D.D. Lakudzala, C.C. Kaonga

University of Malawi, The Polytechnic, P/Bag 303, Chichiri, Blantyre 3, Malawi, Southern Africa. *hmapoma@poly.ac.mw; Phone: +265 1 870 411 / +265 991 247 701/ +265 888 126 413; Fax: +265 1 870 578

Presented at 19thWaterNet/WARFSA/GWP-SA Symposium Avani Victoria Falls Resort, Livingstone, Zambia, 31st October – 2nd November 2018

Introduction

- Government and development partners have intensified efforts to provide accessible and safe water to rural communities in Malawi.
- This is in line with SDG number 6.
- But, sustainability of the facilities, e.g. boreholes, remains a challenge.

Objectives

study investigated sustainability of borehole water supply in Blantyre rural. Malawi with a focus on Matindi area

Factors studied were community participation, borehole maintenance work, skills of water management committees, financial contributions.

The Study Area

Matindi area

- √ Located in south west of Blantyre (21 kilometres) from the city)
- ✓ Total inhabitants = 3860.
- √ Number of horeholes = 25
 - ✓ Constructed by GoM, NGOs, DANIDA, IRA, Water for People, Village Hygiene Project, Water Aid, Mynnadzzwamat Dawat Islamic

- i. Households respondents technique (questionnaire);
 - $\checkmark N_f = \frac{1}{(1+2)/N}$ (Mugenda Mugenda 1999)
 - √ = 200 respondents selected
- ii. Test for reliability of instruments Crombach's Alpha.
 - Result > 0.7 (reliable) (George & Mallery, 2003; Creswell, 2003).
- iii. Regression analysis to evaluate the factors affecting sustainability of boreholes
- iv. Correlation to evaluate relationship between the independent variables

About the Author and Acknowledgements

- he authors acknowledge The Polytechnic fo

Results and Discussion

Age Distribution of Respondents 3% 3% 3.5%

Respondents level of Education ■ Primary ■ Secondary ■ University/College

Influence of community participation on

- Decision on site location of boreholes ~ 86.3% of respondents participated
- Figure below shows dominance of the community on deciding the exact construction site for the boreholes

■51-55 years

Important

affecting

borehole

sustainability

Distribution of

skills of committee

members PPMC show a positive link btwn levels of skills and sustainability of boreholes (r

issues Isolated

by respondents

- 3. Only 2 % of the community participate in decision on type of borehole technology pump against 98% (providers)
- 4. 94 % of participants indicate participation in operation and maintenance of boreholes
- 5. 96% of respondents affirmed knowledge of the significance of community participation in decision making on water supply
- Mild relationship between community participation and sustainability
- **Pearson's Product Moment Correlation** (PPMC), r = 0.54, p < 0.05Management versus sustainability of boreholes

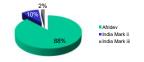
Community participation

Responses on mgt training for committees

of capacity to train committees

Willingness to contribute funds affects

to them


√ 72% of the committee said no formal

operation and maintenance training given

84% of borehole providers indicated lack

sustainability of boreholes (r = 0.795, p < 0.05)

Challenges and opportunities associated with borehole maintenance

- ✓ Recommended by Govt, the AFRIDEV hand pump is easy to maintain.
- 87.3% of respondents identified that spare part are scarce in Mw
- 73% of respondents claim hand pump technicians do the repairs,
 - √ 27% claimed water committees themselves repair the hand pumps ✓ Requiring constant training

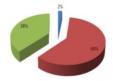
Figure below shows percentage of claims on years of continuous functioning of the borehole after construction

Whether the borehole is working or not

- √ 83.3% reported positive functioning of their boreholes versus 16%. ~ 0.7% not sure.
- Figure below indicating %age of respondents indicating period of borehole nonfunctionality in their community.

Figure below indicating percentage of people ascribing to a reason for borehole nonfunctionality

1. Problems faced during borehole drilling


Dry or Low yielding hole Poor roads to sight

3. Financial capacity to sustain the boreholes

Major problems encountered with their boreholes

- 2. Borehole maintenance schedule
- 4. Seasons in which a borehole was drilled ~ prefer dry season
 - Dry season yields are reliable

0.37, p < 0.05 **Conclusions and Recommendations**

- i. The combination of factors contribute to overall sustainability of boreholes in Matindi
- ii. Community participation in all decision making process is very vital to sustainability of borehole facilities in the area
- iii.Type of borehole technology plays a role in sustainability of boreholes
- Increased training of water committees on operation, maintenance and financial management is recommended
- Communities should be allowed to participate in choosing the type of technology

References and source of information

Creswell, J.W. (2013). Research design: Qualitative, quantitative, and mixed methods approaches. 4th ed. London, UK: SAGE Publications, Inc. George, D., & Mallery, M. (2003). Using SPSS for Windows step by step: a simple guide and reference. Mugenda, A. G., & Mugenda, O .M. (1999). Research methods: Quantitative and qualitative approaches. Nairobi, Kenya: Act Press.