ASSESSING THE IMPACT OF LAND USE ON WATER **QUALITY USING GIS AND RS:MUDI RIVER,BLANTYRE**

RIC 2022

September 6-8, 2022

SARAH CHIRWA UNIVERSITY OF MALAWI-THE POLYTECHNIC

Acknowledgement

Sarah Chirwa1

Mr Charles Kapachika²

- (1) The Polytechnic, Malawi.
- (2) The Polytechnic2, Malawi.

sarahchirwa96@gmail.com

Outline

Introduction/Background
Problem statement
Objectives
Methodology(Data and Methods)
Results/Outputs
Conclusion and recommendations

Introduction/Background

- Water is one of the most precious resource available to us
- Rivers are valuable sources of water for drinking, irrigation, industrial use, recreation etc.
- Many rivers particularly in developing countries are heavily polluted (Adie et al 2018)
- Mudi River had quality water in 1980s-no longer the state

Problem statement

- Despite the existing waste control laws and policies, anthropogenic activities continue to degrade the quality of water in Mudi river
- Earlier noted by Kumwenda et al 2012 and Chaima 2015
- GIS technology was not used
- This study aimed at assessing the impact of land use on water quality using GIS technology

Objectives

- To record the locational coordinates of sample stations
- Measure water quality parameters (EC,TDS,PH,TURB,TEMP,NIT)
- To determine the spatial variations of the measured water quality parameters
- To delineate watersheds based on the sample point
- To carry out a correlation analysis between the land use categories and the measured water quality parameters within the watersheds

Methodology (Data & Methods)

- 7 sample points were selected
- Samples collected in the middle of the river using a sterile white plastic bottle of 250 ml (Elbag, 2006)
- Results compared with WHO & Malawi Bureau of Standards (MBS).
- Kriging Interpolation to determine spatial variation

Results/Outputs

Conclusion and Recommendations

	EC	TDS	РН	TURB	NITRATES	CROPLAND
EC	1					
TDS	0.99398	1				
РН	0.781835	0.791038	1			
TURB	0.56108	0.606996	0.511505	1		
TEMP	0.94781	0.932555	0.822858	0.590347		
NITRATES	0.92075	0.923378	0.857249	0.39246	1	
CROPLAND	0.97670	0.998283	0.931509	0.999492	0.9987	1

- some of the water quality parameters were within standards(TDS) some parameters exceeded the MBS and WHO standards
- Positive correlation
- ➤Improve management approaches environmental awareness
- continuous monitoring -Geospatial technologies
- proper land-use planning and catchment management

Thank You for your Attention

Questions?

